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1. Introduction

1

Le domaine de recherche présenté dans ce texte mélange géométrie riemannienne, géométrie métrique et
théorie des groupes de Lie. Dans ce vaste contexte, les variétés différentielles sont les objets principaux,
en tant que lieux privilégiés pour faire de la géométrie. Le concept (toujours réalisable) de métrique
riemannienne permet à l’espace topologique sous-jacent à une variété d’être enrichi par la présence d’objets
de nature métrique. Il permet en effet de disposer des notions de distance, d’angles, d’une mesure de
volume puis des notions plus sophistiquées de géodésiques (droite de plus court chemin localement) ou de
courbure par exemple. L’étude de ces variétés riemanniennes a révélé une théorie très importante, très
dynamique de nos jours, riche d’interconnexions avec les autres branches des mathématiques.

Un cas particulier très important de cette théorie est celui des espaces symétriques. Les géométries
symétriques sont celles qui possèdent un très gros groupe d’isométries. C’est le cas des familles d’exemples
les plus répandues (géométrie sphérique, euclidienne ou hyperbolique) mais aussi d’autres espaces ho-
mogènes (l’espace des formes quadratiques définies positives de déterminant 1, SLn(R)/ SOn(R), par

1N.B : Cette introduction est rédigé dans un style informel. Les définitions précises se trouvent à la section 2
1
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exemple). Un fait remarquable dans cette situation est que l’étude géométrique d’un espace symétrique
(simplement connexe) peut être menée de façon purement algébrique. C’est ainsi qu’apparâıt la struc-
ture d’algèbre de Lie qui sert dans cette situation à décoder les phénomènes géométriques. Un théorème
d’uniformisation permet de ramener l’étude des variétés métriques complètes localement modelées sur un
espace symétrique à celui des sous-groupes discrets d’un groupe de Lie. La correspondance consiste à
passer de la variété au groupe en prenant le groupe fondamental et du groupe à la variété en considérant
le quotient du revêtement universel (qui est un espace symétrique) par le groupe, qui agit par isométries.
La taille du groupe d’isométries (et donc la possibilité de créer beaucoup de sous-groupes discrets) ex-
plique pourquoi ces géométries symétriques sont très répandues. Dans l’espoir de montrer qu’une situation
symétrique est en fait une situation générique, la géométrie riemannienne fournit aussi des outils dits de
”comparaison”.

L’attention portée ici aux espaces symétriques implique que les méthodes diffèrent des méthodes rie-
manniennes habituelles. La géométrie riemannienne se propose en effet de développer des outils de nature
différentielle, par l’intermédiaire de champs de tenseurs sur la variété. Les résultats de la théorie con-
siste alors à interpréter géométriquement (ou au moins topologiquement) le comportement de ces tenseurs.
Cependant, lorsque le groupe des isométries est suffisamment gros, on peut espérer raisonner différemment,
et faire par exemple fonctionner le principe selon lequel

Quitte à faire agir le groupe, on peut supposer que ...

...la situation est explicite et plus simple. Le premier objectif de ce projet est d’amener à une meilleur
compréhension des invariants géométriques globaux définis sur un espace symétrique, ou plus généralement
sur une structure différentielle qui supporte une métrique symétrique et cela constitue mon activité de
recherche principale. Parmi les invariants globaux considérés, l’entropie volumique, le volume, le volume
minimal, la systole et la cohomologie sont les plus importants (2.1.2).

Plus récemment, la géométrie riemannienne a aussi trouvé une porte d’entrée dans l’étude des espaces
métriques (qui ne sont pas nécessairement des variétés), notamment par l’intermédiaire d’une définition
purement métrique de la courbure négative. C’est pourquoi on trouvera aussi dans ce texte des projets
consacrés à la géométrie des immeubles ou aux géométries de Hilbert. Les immeubles sont aux espaces
symétriques ce que les arbres sont à l’espace hyperbolique : des espaces singuliers mais dont les pro-
priétés géométriques à grande échelle possède des points communs avec la géométrie symétrique (et avec
un groupe d’isométries omniprésent : SL2(R) agit naturellement sur le plan hyperbolique; SL2(Qp) agit
naturellement sur un arbre). Les géométries de Hilbert constituent une autre grande famille de géométries
qui généralisent la géométrie hyperbolique : ce sont des déformations projectives de la géométrie hyper-
bolique.

Plutôt que de prétendre dresser une liste de toutes les questions ouvertes que l’on peut formuler avec ces
ingrédients, ce texte ne contient qu’une sélection qui correspond plus à mes goûts et à mes compétences.
Ainsi, un paragraphe est consacré aux questions de rigidité/flexibilité. Un des grands objectifs de ma
carrière est en effet de comprendre ce qui est rigide (et pourquoi) et ce qui est flexible (et jusqu’à quel
point).

Ces trois aspects de mon activité de recherche (invariants globaux des espaces localement symétriques,
géométrie métrique et les questions de rigidité/flexibilité - les thématiques pouvant d’ailleurs s’entremêler)
sont détaillés à la section 3, avec des propositions de questions concrètes sur lesquelles se pencher. Ces
questions sont classées selon deux niveaux de difficulté qui correspondent à des projets à court-terme ou à
des sujets plus ambitieux. Auparavant, à la section 2, on donne les prérequis mathématiques nécessaires,
un état de l’art actuel (en insistant sur mes propres contributions) et on discute des enjeux de ce projet
de recherche. Deux niveaux de lecture sont proposés : le lecteur avec une culture mathématiques qui
n’est pas dirigée vers la géométrie est encouragé à sauter les parties du texte écrites en petit.

2. Résumé des travaux

2.1. Quelques prérequis.
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2.1.1. Géométrie des espaces symétriques. Le lecteur est supposé familier avec les bases de la géométrie
différentielle, y compris l’aspect riemannien (voir par exemple [Lee97]). En revanche, le contexte symétrique
est plus spécifique, bien que fréquent.

Définition 1 (Espace symétrique de type non-compact). un espace symétrique de type non-compact est

une variété riemannienne (M̃, g) simplement connexe, de courbure négative ou nulle, sans facteur de de
Rham isométrique à R (cela signifie que l’on ne peut pas écrire la variété comme un produit riemannien

avec un facteur R) et telle qu’en chaque point p ∈ M̃ , il existe une isométrie σp telle que dpσp = −id.

Cette définition signifie que la variété riemannienne (M̃, g) a beaucoup d’isométries. En fait, on peut
même montrer facilement que le groupe d’isométrie est si gros qu’il est transitif sur la variété puis que le
stabilisateur d’un point est un sous-groupe compact strict et maximal du groupe d’isométries. Inverse-
ment, si M̃ s’écrit G/K comme ci-dessus, alors G préserve une métrique riemannienne sur M̃ (le groupe

K étant compact, il préserve une métrique sur T[e]M̃ , que l’on peut ensuite promener par l’action de G).

Le groupe G est semi-simple si et seulement si la courbure de M̃ est négative ou nulle et M̃ n’a pas de
facteur R. Ainsi de la définition géométrique, on déduit une caractérisation algébrique : (M̃, g) est un

espace symétrique de type non-compact si et seulement si M̃ = G/K et g est une métrique G-invariante à
gauche; où G est un groupe de Lie semi-simple et K est un sous-groupe compact maximal. On peut alors
décrire indifféremment un espace symétrique par son espace homogène M̃ ou son groupe semi-simple G.

Une solide référence est le livre de P. Eberlein [Ebe96].
Mentionnons encore quelques aspects de la géométrie des espaces symétriques. La définition ci-dessus

autorise la présence de zones plates (de courbure nulle) dans la variété et il existe un moyen de quantifier
l’importance de ces zones plates. On montre en effet que les espaces euclidiens maximaux plongés de
manière isométriques dans M̃ ont tous la même dimension (le groupe est transitif sur ces plats). Cette
dimension des plats maximaux s’appelle le rang de l’espace symétrique.

Mais la dimension n’est pas le seul point commun à ces plats maximaux. Chacun d’entre eux est en effet
canoniquement muni du même système de racines comme à la figure 1 qui se représente géométriquement
par un pavage des plats maximaux par des cônes délimités par des hyperplans vectoriels. Nous reviendrons
sur ce type de structure combinatoire au paragraphe 2.1.4. Cette structure caractérise l’espace symétrique,
lorsque le rang est supérieur à 2, [BGS85].

Figure 1. Systèmes de racines de H2 ×H2 (à gauche) et de SL3(R)/SO3(R) (à droite)

Un espace localement symétrique M est une variété riemannienne localement isométrique à un espace
symétrique. Si la variété est complète, on montre qu’elle s’obtient par le quotient de M̃ par un sous-groupe
discret Γ de G. Si M est compacte, on dit que le groupe Γ est cocompact; si M est de volume fini, on dit
que Γ est un réseau.

Pour ce qui est des notations, on désigne dans ce texte un espace symétrique par M̃ , une variété
riemannienne simplement connexe quelconque par X̃, une variété localement symétrique par M et une
variété riemannienne par X.
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La discussion qui suit est plus précise mais plus technique. Elle vise à définir le bord à l’infini d’un espace symétrique et d’en

présenter la structure. Fixons une fois pour toutes un point p ∈ M̃ . Ce point et son involution σp associée détermine une décomposition

de Cartan

g = p⊕ t

de l’algèbre de Lie g de G. L’algèbre de Lie t s’identifie à l’algèbre de Lie de K =StabG(p) et p s’identifie à TpM̃ . Soit a une sous-algèbre

de Lie abélienne et maximale de p. Le rang de M̃ est la dimension de a. Si A = exp(a), alors A · p est un plat maximal (en effet, la
courbure se calcule avec des crochets de Lie dans l’algèbre de Lie).

Un vecteur v ∈ TM̃ est dit régulier s’il est tangent à un unique plat. Sinon il est dit singulier. Une géodésique est elle-aussi dite
régulière ou singulière si l’un (donc tous) de ses vecteurs tangents est régulier ou singulier. Un point du bord de l’espace symétrique

ξ ∈ ∂∞M̃ (pour le bord d’une variété à courbure négative ou nulle, voir la discussion qui précède le théorème 2; le bord est aussi
l’ensemble des classes d’équivalences de géodésiques pour la relation d’”être à distance finie”) hérite lui aussi de la notion de régularité

puisque c’est la limite d’une géodésique. Les vecteurs singuliers de a se répartissent sur des hyperplans vectoriels (qui correspondent

aussi aux hyperplans d’un système de racines). Une chambre de Weyl (ouverte) a+ de a est le choix d’une composante connexe de
vecteurs réguliers de a (qui correspond à un choix de racines positives). De même, dans l’espace symétrique, A+ · p = exp(a+) · p est

une chambre de Weyl.

Une autre notion de bord de l’espace symétrique, plus adaptée au rang supérieur, est le bord de Furstenberg de M̃ . Soit ξ ∈ ∂∞M̃
un point régulier. le bord de Furstenberg s’identifie à l’orbite Gξ de ξ sous l’action de G. C’est aussi l’espace des chambres de Weyl à

l’infini de M̃ (i.e la trace dans ∂∞M̃ des chambres de Weyl de M̃) puisque le groupe G agit transitivement sur ces chambres de Weyl

mais ne connecte jamais deux points de la même chambre. On note P =StabG(ξ) de sorte que le bord de Furstenberg s’identifie à G/P
et on dit que P est un sous-groupe parabolique minimal (il est minimal car ξ est régulier). Les points singuliers ont naturellement un

”type” selon leur position dans le chambre de Weyl fermée; leur orbite donne d’autres notions de bord de M̃ qui s’identifie à des espaces
homogènes G/PΘ où Θ est le type de point singulier. Le bord de Furstenberg se note ∂F M̃ .

2.1.2. Quelques invariants géométriques et topologiques. Les invariants géométriques, différentiables et
topologiques globaux définis dans cette section sont l’entropie volumique et topologique, l’exposant cri-
tique d’un groupe discret, la systole, le volume minimal et la cohomologie (bornée). Le programme de
recherche consacré à ces invariants peut se résumer de la manière suivante : quelles sont les informations
géométriques contenus dans ces invariants ? Gardant cet état d’esprit, on exclut le spectre des variétés
riemanniennes dont l’étude est essentiellement analytique et dont on sait qu’il n’a que peu de contrôle sur
la géométrie [Bus92, chapitre 12].

Soit (X, g) une variété compacte de revêtement universel riemannien (X̃, g). On fixe un point x ∈ M̃ .
On montre que la quantité suivante existe et qu’elle est indépendante de x :

h(g) = lim
R→∞

log VolB(x,R)

R
.

On appelle h(g) l’entropie volumique de la métrique g.
L’entropie est donc une quantité qui mesure le taux de croissance exponentielle du volume des boules

riemanniennes. Elle ne dépend que de la géométrie du revêtement universel (pourvu qu’il admette un
quotient compact). Noter que dans l’espace euclidien, le volume des boules a une croissance polynomiale
avec le rayon de sorte que l’entropie est nulle. En revanche dans l’espace hyperbolique, on trouve facilement
h(Hn) = n − 1. En courbure strictement négative, l’entropie est toujours strictement positive (par
comparaison à l’entropie algébrique du groupe [Mil68]). L’entropie algébrique du groupe muni d’un
système fini de générateurs est l’entropie métrique d’un graphe de Cayley, on montre ensuite que le
revêtement universel d’une variété compacte est quasi-isométrique au graphe de Cayley. L’annulation
ou la positivité de l’entropie est préservée par quasi-isométries. Ainsi donc, on constate que le contexte
riemannien n’est pas le plus général avec lequel travailler. En effet, dans tout espace métrique mesuré, on
peut calculer des volumes de boules (2.1.3). Il n’y a en revanche aucune garantie que la limite existe et
c’est en général un enjeu important de comprendre quels sont les espaces métriques mesurés qui admettent
une entropie volumique (voir à ce propos la question 11 bis du programme de recherche).

Un exemple : L’entropie des espaces symétriques se calcule facilement avec les données introduites au paragraphe 2.1.1. Soit en

effet, b le ”barycentre” de la chambre de Weyl, c’est-à-dire la somme des vecteurs duaux aux racines positives qui déterminent a+.
Alors, on peut montrer ([Alb99]) que h(M̃) = ‖b‖. Pour cela, il s’agit de voir que, pour tout réseau Γ de G, la direction de croissance

maximale de Γ est b puis d’appliquer le théorème 2.

La terminologie entropie suggère aussi une interprétation dynamique ou comme la mesure d’une certaine
indétermination. Ces notions-là d’entropies existent et ont bien des similitudes avec la notre [KH97]. Nous
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n’utiliserons pas la version probabiliste dans ce texte mais la version dynamique apparâıtra au paragraphe
3.3.4.

La notion suivante vise à définir une mesure du chaos de la dynamique du flot géodésique. Soit donc
(X, g) une variété riemannienne compacte pour laquelle on considère son flot géodésique Φt. Par définition
Φt est l’application du tangent unitaire T 1X de X dans lui-même qui, à un vecteur v associe γ′v(t) où γv
est la géodésique de vecteur initial v.

On considère la distance dT sur T 1X définie par

dT (u, v) = sup
t6T

d(πX(Φt(u)), πX(Φt(v))).

Ici d est la distance riemannienne sur X et πX la projection canonique de T 1X sur X. Ainsi, les boules
B(u, ε) pour la distance dT sont constituées des vecteurs v dont l’orbite reste à distance inférieure à ε de
celle de u jusqu’au temps T .

Dans cette situation on dit qu’un sous-ensemble S de T 1X est (ε, T )-séparant si, pour tout u, v ∈ S,
dT (u, v) > ε et on note Sep(ε, T ) la taille d’un ensemble (ε, T )-séparant maximal. Ce nombre mesure le
nombre d’orbites qui peuvent être reconnues jusqu’au temps T avec une précision ε. Enfin, on définit
l’entropie topologique du flot géodésique par

htop(X) = lim
ε→0

lim sup
T→∞

log Sep(ε, T )

T
.

L’exposant critique est une variante de l’entropie volumique et dont les points communs permettent
parfois de lui faire jouer un rôle analogue (voir à ce sujet la question 8 du programme de recherche).
C’est un nombre réel associé à un sous-groupe discret d’isométries d’une variété riemannienne simplement
connexe. Bien que sa définition puisse avoir du sens dans le contexte général suivant, son utilisation n’est
pertinente qu’en courbure sectionnelle K pincée, c’est-à-dire qu’il existe deux constantes a et b positives
telles que

−a 6 K 6 −b.
[Pei13] ou pour des groupes de covolume fini (voir la question 8 de la section 3) On forme dans un premier
temps la série de Poincaré

P (s, x,Γ) =
∑
γ∈Γ

e−sd(x,γx).

En tant que série de Dirichlet, cet objet a un exposant critique indépendant de x, donné par

η(Γ) = lim
n→∞

log # {γ ∈ Γ | d(x, γx) 6 n}
n

.

Soit maintenant X̃ une variété riemannienne simplement connexe de courbure sectionnelle K négative
ou nulle Un phénomène de courbure négative assure que X̃ est différentiable à Rn, via l’exponentielle
riemannienne en un point arbitraire. On peut donc canoniquement compactifier X̃ par l’ajout d’une
sphère à l’infini que l’on appelle le bord de X̃ et que l’on note ∂∞X̃. Puisque le groupe Γ est discret, ses
orbites Γ · x pour x ∈ X̃ ne peuvent s’accumuler qu’au bord ∂∞X̃. On note Λ(Γ) = Γ · x\Γ · x les points

d’accumulations d’une orbite. Le bord ∂∞X̃ étant canoniquement muni d’une métrique, on peut calculer
la dimension de Hausdorff de Λ(Γ). C’est un invariant que l’on note δ(Γ).

Théorème 2 (Comparaisons).

(1) Pour une variété compacte X, on a toujours h 6 htop avec égalité si (mais pas seulement si) X
a une courbure partout négative.

(2) Pour toute variété riemannienne (X, g) et tout groupe discret Γ, on a toujours h(g) 6 η(Γ). Il y
a égalité si Γ est cocompact.

(3) En courbure négative pincée, et pour des groupes convexe-cocompacts 2,

η(Γ) = δ(Γ).

(4) En courbure négative ou nulle, si le groupe Γ est cocompact, alors Λ(Γ) = Sn−1.

2Une façon de dire que la variété a la topologie d’une variété compacte mais sans être nécessairement compacte, voir plus
bas le paragraphe 2.2.4
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La deuxième et la dernière assertions sont élémentaires, la première est un résultat de [Man79], la
seconde est un théorème de [Yue96]

Que l’on retire la condition de courbure négative, même dans le cas des espaces symétriques, et la
situation se complique énormément. Par exemple, bien que l’on puisse définir un exposant critique pour
un groupe discret d’isométries d’un espace symétrique de rang supérieur, il est préférable de modifier la
construction pour tenir compte de la nature du point base [Qui02] : le groupe d’isométrie n’étant pas
transitif sur les couples de points à même distance, la distance d(x, γx) n’est pas la seule information
portée par le couple (x, γx). Le groupe n’étant pas non plus transitif sur le bord, l’ensemble limite est
une réunion d’orbites, chacune ayant un rôle à jouer (voir l’article récent [GMT19]).

L’exposant critique d’un groupe discret est le premier ingrédient de la théorie de Patterson-Sullivan. Dans différents contextes, par
exemple pour des groupes discrets d’isométries d’un espace symétrique ([Qui02] et [Alb99]) ou pour des variétés à courbure négative

([Rob03], voir aussi [Qui]), on construit une famille de mesures (νx)x∈X̃ , chacune supportée sur Λ(Γ) et vérifiant les deux conditions

suivantes.

(1) La famille de mesures est Γ-équivariantes, c’est-à-dire solution de l’équation, pour tout γ ∈ Γ,

γ∗νx = νγx

(2) Les mesures (νx) sont toutes à densité les unes par rapport aux autres avec

∂νx

∂νy
(θ) = e−η(Γ)b(θ,x,y)

où b : ∂∞X̃ × X̃ × X̃ est la fonction de Busemann définie par

b(θ, x, y) = lim
t→∞

dX̃(y, γθ(t))− t

si γθ est l’unique géodésique telle que γθ(0) = x et γθ(∞) = θ.

Il y a unicité d’une telle famille de mesures si Γ n’est pas élémentaire. On dit que ce sont les mesures de Patterson-Sullivan de Γ. Dans

bien des cas, ces mesures permettent d’étudier les propriétés ergodiques du flot géodésique sur Γ\X̃, [Rob03]. Mais, dans l’esprit de

ce texte, elles constituent un plongement équivariant de X̃ dans l’espace des mesures sur Λ(Γ) et la géométrie de Γ\X̃ s’étudie par

l’intermédiaire de techniques de géométrie extrinsèque vis-à-vis de ce plongement (voir page 9)

Sur une variété riemannienne (M, g), la systole est par définition la longueur d’une des plus petites
courbes non contractiles, comme illustré sur la figure 2.

Figure 2. La systole d’une surface de genre 2

On la note sys. Par extension, on désigne aussi parfois par la systole, la ou les courbe(s) qui réalise(nt)
cette longueur minimale. Un résultat profond dont l’esprit est d’établir une inégalité ”isopérimétrique”
de M. Gromov ([Gro83]) prétend que la systole est majorée par le volume : pour une variété fermée
essentielle 3 M , il existe une constante cn qui ne dépend que de la dimension n de la variété telle que,
pour toute métrique g sur M ,

sysn(g) 6 cn Vol(g)

3Une condition topologique très faible; c’est par exemple le cas des variétés asphériques, par exemple celles qui portent
une métrique de courbure négative ou nulle
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Si la systole est grande en effet, pour que la variété (compacte) se referme autour, cela nécessite un
gros volume. Dans un contexte géométrique suffisamment vague, on ne peut pas en général donner des
estimées plus précises sur le comportement de la systole. Une direction de recherche actuelle consiste à
tenter d’affiner la constante cn lorsque l’on fait des hypothèses topologiques additionnelles sur la variété.
L’invariant topologique (ce n’est pas évident, a priori, ce n’est qu’un invariant de la structure différentiable,
voir [Bab92]) associé est en fait le volume systolique σ(M) :

σ(M) = inf
g

Vol(M, g)

sys(g)n

où l’infimum est pris sur l’ensemble des métriques riemanniennes sur M . Puisque la quantité à minimiser
est homogène, on peut, de manière équivalente, considérer la plus grande systole parmi les métriques de
volume 1 sur M .

Un dernier invariant, introduit dans [Gro82] est cette fois-ci de nature différentiable ([Bes00]). Soit
donc X une variété différentiable. On appelle en effet Volume minimal la quantité

MinVol(M) = inf {Vol(M, g) | g est une métrique sur M satisfaisant |K(g)| 6 1}

Dans son article fondateur [Gro82], l’auteur relie volume et cohomologie bornée d’une variété rieman-
nienne compacte X. Un panorama complet de la théorie dépasse le cadre de ce texte et on renvoie au
livre [Mon01] pour découvrir le sujet.

Rappelons seulement que la cohomologie bornée est la cohomologie du complexe des fonctions bornées Γ = π1(M)-invariantes sur

M̃ ,

Cb(M̃n+1,R)Γ,

avec une différentielle ”combinatoire” donnée par

∂f(x0, · · · , xn+1) =

n+1∑
i=0

(−1)if(x0, · · · , x̂i, · · · , xn+1).

Elle est en général plus riche que la cohomologie ordinaire car il arrive souvent que ∂f soit bornée sans que f le soit, fournissant ainsi une

classe de cohomologie non nulle en cohomologie bornée mais triviale en cohomologie ordinaire, [BG92]. Par exemple, si S est une surface
de caractéristique d’Euler négative, H2

b (S) n’est pas de dimension finie, [Fri17] (car π1(S) admet beaucoup de quasi-morphismes). La

philosophe générale prétend donc que les groupes de cohomologie bornée contiennent plus d’informations topologique sur X que la

cohomologie ordinaire. C’est en tout cas un enjeu important de comprendre ces groupes (peu de choses sont connues à leur propos)

2.1.3. Géométrie de Hilbert. Le modèle de Klein fait apparâıtre la géométrie hyperbolique comme un
ellipsöıde de l’espace projectif, métrisé par la formule

d(p, q) =
1

2
log ([a : p : q : b]) ,

où [a : p : q : b] désigne le birapport des quatre points.
Déformons maintenant l’ellipsöıde en un convexe quelconque Ω de l’espace projectif. La même formule

définit alors une distance à l’intérieur du convexe. On dit alors que l’on a déformé la structure projective
sous-jacente à la géométrie hyperbolique. L’espace métrique obtenu (Ω, dΩ) s’appelle une géométrie de
Hilbert (figure 3).

Figure 3. Une géométrie de Hilbert

En se référant à [PT14] pour une approche détaillée, voici quelques propriétés utiles des géométries de
Hilbert

(1) Les espaces (Ω, dΩ) sont des espaces métriques complets (le bord du convexe est ”à l’infini”).
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(2) La métrique dΩ n’est riemannienne que dans le cas où Ω est un ellipsöıde. En revanche, dΩ est
toujours finslérienne, engendré par la famille de normes

‖v‖p =
1

2

(
1

t1
+

1

t2

)
,

où t1 et t2 sont les deux réels positifs tels que p+ tiv ∈ ∂Ω.

Figure 4. La structure finslérienne

(3) Les droites euclidiennes sont des géodésiques de (Ω, dΩ) et ce sont mêmes les seules si Ω est
strictement convexe.

(4) Les transformations projectives qui laissent Ω invariant sont des isométries de dΩ.

Pour définir une entropie des géométrie de Hilbert, il faudrait disposer d’une mesure de volume. Or
il n’existe pas de choix canonique d’une telle mesure (comme dans le cas riemannien) mais une famille

de mesures possibles, voir [ÁPT04]. Cependant, ces choix de volumes sont sans influence sur l’entropie,
celle-ci n’ayant pour vocation qu’à capturer des phénomènes géométriques de grande échelle. Un choix
possible est la mesure de Busemann : on considère la fonction σ sur Ω donnée par

σ(x) =
ωn
L(Bx)

où ωn est le volume de la boule unité euclidienne de Rn, L est la mesure de Lebesgue et Bx est la boule
unité Finslérienne centrée en x. Enfin la mesure de Busemann µ est une mesure dans la classe de la
mesure de Lebesgue dont la densité est σ, i.e:

µ(A) =

∫
A
σ(x)dL(x)

pour tout borélien A.

La quantité log VolB(x,R)
R ne converge cependant pas toujours (voir question 11 bis). On note les limites

inférieures et supérieures par h et h respectivement. La notation h seule signifie implicitement que la
limite existe.

2.1.4. Géométrie des immeubles. La référence principale pour appréhender la structure d’immeuble est
[AB08] mais le point de vue employé ici suit l’approche géométrique de [KL97]. Commençons par une
discussion heuristique. La terminologie très imagée fournit une bonne intuition : un immeuble est une
réunion d’appartements, chaque appartement est lui-même découpé en chambres qui sont séparées par
des murs. Un appartement est par définition un espace euclidien muni d’un pavage. Noter l’analogie avec
les plats des espaces symétriques (analogie renforcée par la terminologie anglaise). Les chambres sont les
composantes connexes de ce pavage, les murs sont les hyperplans (affines dans ce cas) de pavage. Puis la
structure globale est obtenue en ”branchant” ces appartements le long des murs (chaque mur étant donc
commun à plusieurs appartements). Lorsque l’espace euclidien est de dimension 1, un immeuble est un
arbre.

Plus précisément, soit G un groupe fini engendré par des réflexions vectorielles de Rn, H un sous-groupe du groupe des translations

de Rn qui engendre Rn sur R, puis W = G nH le groupe affine dont la partie vectorielle est G et la partie de translation est H. Les
hyperplans affines de réflexions de W sont les murs évoqués plus haut. Un espace métrique X est un immeuble affine s’il existe un atlas

de plongements isométriques ϕ : Rn → X tel que

(1) Chaque changement de cartes ϕ−1
2 ◦ ϕ1 est la restriction d’un élément de W .

(2) Deux point quelconque sont dans un même appartement (c’est-à-dire un plongement de Rn).
(3) Chaque mur est contenu dans (au moins) trois appartements.
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Lorsque le groupe H est discret, l’immeuble est muni d’une structure de complexe polysimplicial.

Cette structure apparâıt naturellement pour jouer le rôle de l’espace symétrique associé à un groupe de
Lie qui est un groupe algébrique sur un corps valué non archimédien. L’immeuble est alors un immeuble
de Bruhat-Tits. Par exemple SL2(Qp) agit sur un arbre, [Ser77]. On rencontre aussi des immeubles
lorsque l’on fait ”dégénérer” un espace symétrique (voir page 13).

2.2. État de l’art. Cette section n’a pas vocation à constituer une bibliographie exhaustive des sujets
abordés mais une sélection de travaux qui ouvrent la voie au programme de recherche. C’est l’occasion
de donner quelques détails sur mes contributions.

2.2.1. Sur le comportement des invariants. Le premier résultat de cette section constitue le théorème
principal de l’influent article [BCG95].

Théorème 3 ([BCG95]). Soit (M, g0) un espace localement symétrique compact de rang 1 et de dimension
n > 3. La donnée de toute autre métrique g sur M conduit à l’inégalité

h(g0)n Vol(M, g0) 6 h(g)n Vol(M, g)

L’égalité n’a lieu que lorsque g est isométrique à g0.

Ainsi le volume et l’entropie sont des invariants complets de la géométrie symétrique de rang 1. Les
applications de ce résultats sont nombreuses. Mentionnons par exemple un théorème de rigidité dynamique
sous l’hypothèse de conjugaison des flots, une preuve explicite du théorème de rigidité de Mostow [BCG96]
et un calcul précis du volume minimal dans le cas hyperbolique réel [BCG95, chapitre 9], via l’inégalité
de Gromov-Bishop qui, selon une hypothèse de courbure, donne une estimée du volume des boules.

Ce théorème est à la base de mes travaux de thèse. Il a été étendu dans deux autres cas, un énoncé
général qui impliquerait un espace localement symétrique compact quelconque, restant encore à démontrer.
On a en effet

Théorème 4 ([CF03]). Soit (M, g0) un espace localement symétrique compact de dimension n dont le
revêtement universel est le produit d’espaces symétriques de rangs 1 et de dimensions supérieures à 3.
Alors, pour toute autre métrique g sur M , on a

h(g0)n Vol(M, g0) 6 h(g)n Vol(M, g)

L’égalité n’a lieu que lorsque g est isométrique à g0.

Puis

Théorème 5 ([Mer16b]). Soit (M, g0) un espace symétrique compact dont le revêtement universel est un
produit de plans hyperboliques

(
H2
)n

. Pour toute autre métrique g sur M ,

h(g0)2n Vol(M, g0) 6 h(g)2n Vol(M, g)

Bien qu’optimale, l’inégalité ne vient pas avec son cas d’égalité. Noter qu’en raison de l’absence
de résultat de rigidité de Mostow dans H2, le cas d’égalité n’est conjecturé que pour certains espaces
(irréductibles).

Les preuves de ces trois théorèmes ont un tronc commun qu’il s’agit maintenant de présenter. Cela expliquera notre approche pour
attaquer certaines questions encore ouvertes. On procède en deux grandes étapes, l’une de plongement, l’autre de calibration. On
rappelle qu’afin de distinguer les métriques symétriques des métriques riemanniennes quelconques, on utilise les notations de la page 3.

(1) À chaque métrique g, on associe un plongement Γ-équivariant Φg : X̃ → L2(∂F M̃) qui d’ailleurs est à valeur dans la sphère

unité S∞ de L2(∂F M̃). Noter que le désagrément à travailler en dimension infinie dans L2(∂F M̃) est largement compensé par

le fait que L2(∂F M̃) porte en un seul espace des informations géométriques sur toutes les métriques riemanniennes déposées

sur M . Ce plongement Φg est construit avec les mesures de Patterson-Sullivan (voir page 6) de Γ = π1(X) lorsque g est à
courbure négative ou par une variante si ce n’est pas le cas. Noter que le choix du bord est décisif en rang supérieur.

(2) Il s’agit ensuite de montrer que le plongement le plus canonique Φg0 , celui associé à la métrique symétrique g0, est minimal et

minimisant ou autrement dit que Φg0 (M̃) est une sous-variété minimale et minimisante (parmi toutes les sous-variété du type

Φg(X̃)). L’équivariance des plongements ramène naturellement le problème au cas de variétés compactes. En particulier les

sous-variétés Φg(X̃) ont un ”volume” : celui de tout domaine fondamental pour l’action de Γ sur X̃ calculé avec la métrique

rappelée par Φg de la métrique canonique de L2(∂F M̃).
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Pour comprendre que c’est ce problème de sous-variété minimale qu’il s’agit de résoudre, il faut relier le volume de la

sous-variété Φg(X̃) à l’entropie et au volume usuel de la métrique g. On trouve

Vol Φg(X̃) 6 h(g)n Vol(g),

l’inégalité étant une égalité lorsque g est la métrique g0.
La technique de calibration est une idée classique de la théorie des sous-variétés minimales (voir [HL82]), légèrement

modifiée ici pour s’adapter à la dimension infinie. Elle consiste à exploiter la donnée d’une n-forme différentiable ω sur

L2(∂F M̃) qui est
(i) Γ-invariante

(ii) fermée

(iii) et qui prend des valeurs maximales sur Φg0 (M̃).

La définition même du volume, ainsi qu’un argument à la Stokes appliqué à la forme fermée ω nous donne alors

Vol(Φg) >
∫
M

Φ∗g(ω) =

∫
M

Φ∗g0 (ω) = Vol(Φg0 ),

ce qui, combiné avec les calculs de Vol Φg donne l’inégalité dans les théorèmes.

Comme on le voit, le cœur de l’argument consiste à trouver une forme calibrante ω. À ce stade, les preuves envisagées dans [BCG95] et

[Mer16b] bifurquent. Dans le premier article, la forme calibrante est construite à l’aide de l’application de barycentre des mesures, qui

jouit de fantastiques propriétés de régularisations globales (analysées dans [BCG96]). Dans le second article, j’ai utilisé une stratégie

pour fabriquer beaucoup de formes différentielles sur L2(∂F M̃) et cherché à comprendre lesquelles étaient susceptibles de fournir des

calibrations. Cette stratégie s’implémente de la façon suivante. On munit ∂F M̃ = G/StabG(ξ) de l’unique mesure K-invariante dθ sur
G · ξ. Puis, soit

c :
(
∂F M̃

)n+1
→ R

une fonction antisymétrique et bornée. Avec celle-ci on construit une forme différentielle ω(c) sur S∞ par

ω(c)ϕ(f1, · · · , fn) =

∫
(∂F M̃)n+1

c(θ0, · · · , θn)ϕ2(θ0)ϕ(θ1)f1(θ1) · · ·ϕ(θn)fn(θn)dθ0 · · · dθn,

où ϕ est une fonction de S∞ et les fi sont tangentes en ϕ à S∞, c’est-à-dire,∫
∂F M̃

ϕ(θ)fi(θ) = 0.

On démontre ensuite les deux faits suivants

(i) La forme ω(c) est Γ-invariante si c est Γ-invariante (pour l’action diagonale de Γ).
(ii) La forme ω(c) est fermée si c est fermée au sens de la cohomologie, c’est-à-dire si

∂c =

n+1∑
i=1

(−1)ic(θ0, · · · , θ̂i, · · · , θn) = 0

Ainsi donc, en résumé, pour construire une forme différentielle qui peut être calibrante, il faut que c définisse une classe de cohomologie

bornée de Γ (ou, de manière équivalente de M). Ce groupe de cohomologie bornée est immense; par exemple, dans le cas des surfaces,

il n’est pas de dimension finie. Mais, si l’on veut que l’argument s’adapte à tous les réseaux Γ simultanément, il est commode de choisir
une application c qui est G-invariante et non pas seulement Γ-invariante. Dans le cas des réseaux de

(
H2
)n

, le groupe de cohomologie

bornée H2n
b ((PSL2(R))n) est de dimension 1, engendré par le cup product de classes d’Euler (voir [BK08]). Pour le cas des groupes de

Lie semi-simple en général, le même résultat est conjecturé.
Quoi qu’il en soit, pour terminer la preuve du théorème principal de [Mer16b], il suffit de vérifier qu’un cocycle bien choisi, générateur

de H2n
b ((PSL2(R))n) convient. Cela passe par une analyse explicite et assez fine de la transformée de Fourier du cocycle.

2.2.2. Courbure de Ricci et entropie volumique. Dans une optique récente, l’entropie prétend jouer le rôle
de substitut à la courbure de Ricci. Cette comparaison entropie/courbure de Ricci est rendue possible
par l’inégalité de Gromov-Bishop qui traduit une borne inférieure sur la courbure en une borne supérieure
sur l’entropie [GHL04, théorème 3.101]. Bien sûr, l’entropie est un invariant beaucoup plus faible. Un
programme de recherche peut donc s’organiser de la manière suivante.

(1) Trouver un énoncé de la littérature riemannienne qui fait intervenir une hypothèse sur la courbure
de Ricci.

(2) Que reste-t-il de cet énoncé si l’on remplace courbure de Ricci par entropie ?

L’enjeu de ce programme de recherche consiste à englober une classe beaucoup plus large d’espaces
métriques, l’entropie étant définie sur chaque espace métrique mesuré, ce qui est beaucoup plus souple que
la notion de variété riemannienne. C’est dans cet esprit que deux travaux récents ont vu le jour, [BCGS17]
et [BM20]. Le deuxième article est le fruit d’une collaboration avec Florent Balacheff (Barcelone). Le
théorème principal est une inégalité géométrique qui permet d’estimer l’entropie en fonction du bas du
spectre des longueurs. Sa valeur réside dans son application en un ”lemme du collier” généralisé et
rentre dans le cadre précédent. Le lemme du collier est un résultat classique de la théorie des surfaces
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hyperboliques. Il affirme que si α et β sont deux courbes qui s’intersectent sur une surface hyperbolique
fermée, alors (on note l1 la longueur de α et l2 celle de β),

sinh
l1
2

sinh
l2
2

> 1.

Ainsi, plus la longueur de α est petite, plus la largeur du ”collier” qui l’entoure est grande. Nous obtenons
alors en particulier le résultat suivant.

Théorème 6 ([BM20]). Soit M une variété riemannienne fermée d’entropie h et soit c1 et c2 deux lacets
basés en un point x ∈M qui engendrent un groupe libre dans π1(M,x). Alors

`(c2) >
1

h
log

(
4

h`(c1)

)
+ o(1)

pour `(c1) proche de 0.

C’est une large généralisation du lemme du collier puisque l’énoncé concerne n’importe quelle variété
riemanienne (dont le groupe fondamental contient un groupe libre) et non pas seulement des surfaces
hyperboliques (on remplace ainsi une hypothèse de courbure par une hypothèse sur l’entropie). L’estimée
sur la taille du collier est du même ordre que dans le cas hyperbolique (pour lequel h = 1).

2.2.3. Géométries de Hilbert. À propos de l’entropie des géométries de Hilbert, le résultat le plus profond
est sans doute dans l’article [Tho17].

Théorème 7 ([Tho17]). Pour tout convexe compact Ω de Rn, h̄(Ω) 6 n− 1.

La limite est atteinte dans le cas hyperbolique. Mais, contrairement aux espaces symétriques, l’entropie
ne joue aucun rôle de rigidité. En fait, dès que le bord du convexe Ω est suffisamment régulier, l’entropie
est maximale.

Théorème 8 ([BBV10]). Supposons que ∂Ω soit paramétrisé par une fonction ϕ de classe C1,1. Alors
h(Ω) = n− 1.

D’autres situations ont aussi été étudiées, notamment le cas des convexes divisibles [Cra09]. Le travail
présenté ensuite est le fruit d’une réflexion assez complète sur la relation entre la régularité du bord du
convexe et la valeur de l’entropie. C’est une collaboration avec J. Cristina à Lausanne. L’idée est d’obtenir
un résultat de nature suivante. Supposons que l’on se donne une famille d’espace de Banach Bα et que le
bord d’un convexe Ω soit paramétrisé par une fonction ϕ ∈ Bα. Peut-on exprimer l’entropie en fonction
de α ? Nous obtenons deux résultats dans cette direction. Il serait tentant de penser que l’on peut tester
le cas des régularités C1,α. Or rien n’empêche une fonction C1,α d’être plus régulière et d’être du coup
redevable des hypothèses du théorème précédent. Il faut donc considérer une classe d’espaces de Banach
qui exprime qu’une fonction est de classe C1,α mais pas plus régulière. C’est le sens de l’hypothèse de
α-Ahlfors régularité dans l’énoncé suivant.

Théorème 9 ([CM16]).

(1) Soit Ω un convexe de Rn dont le bord est paramétrisé par une fonction ϕ dans l’espace de Sobolev
W2,p pour p > n− 1. Alors

h(Ω) = n− 1.

(2) En dimension 2, supposons que la paramétrisation de Ω soit une fonction α-Ahlfors régulière.
Alors

h(Ω) =
2α

α+ 1
.

La première partie étend le théorème de [BBV10] car C1,1 =W2,∞.

(1) Le premier résultat s’obtient en suivant la démarche de [BBV10]. On constate que la densité de Busemann converge, lorsque le
paramètre x approche un point ξ sur le bord, vers la courbure de ∂Ω en ξ. En régularité C1,1 la courbure du bord existe presque

partout. En régularité plus basse, la courbure n’existe que sous forme d’une mesure sur Sn−1 et non plus ponctuellement et
c’est donc une convergence en mesure dont il est question. Voulant calculer la limite sur des cercles de plus en plus grands de
la moyenne de la fonction de Busemann sur ces cercles, la théorie géométrique de la mesure fournit les outils adéquats.
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(2) Le deuxième résultat est plus difficile et s’obtient en deux étapes. On calcule dans un premier temps l’entropie de certains

convexes de référence. Ces convexes sont obtenus en enroulant (la primitive de) la fonction ”escalier du diable” de Lebesgue.

On cherche ensuite à comparer la situation générale à cette situation de référence. Pour ce faire on utilise (et affine) un
théorème de [MS09] de comparaison d’ensembles de Cantor réguliers. Noter que si ϕ est une fonction α-Ahlfors régulière, sa

dérivée seconde au sens faible est une mesure supportée sur un ensemble de Cantor de dimension de Hausdorff α.

2.2.4. Questions de rigidité/flexibilité. C’est un thème transverse de mon activité de recherche. On a déjà
rencontré dans ce texte le thème de la rigidité parmi les résultats de rigidité entropique du paragraphe
2.2.1 ou de flexibilité des représentations dans le théorème 11. Un objet mathématique est dit rigide s’il
dépend de moins de paramètres que ce que sa définition näıve suggère. Par exemple, le célèbre théorème
de Mostow affirme que si deux variétés hyperboliques compactes de mêmes dimensions supérieures à 3
sont homéomorphes, elles sont en fait isométriques. C’est un résultat de rigidité au sens où la structure
géométrique ne dépend que de la topologie. À l’inverse, un objet est dit flexible s’il apparâıt inchangé
dans une famille de situations. Par exemple, les variétés hyperboliques compactes de dimension 2 sont
flexibles car il en existe qui sont homéomorphes mais non isométriques (en fait tout un espace, l’espace
de Teichmüller de la surface topologique).

En plus de vouloir classifier les objets flexibles et les objets rigides, un programme de recherche sur ces
questions visera à établir deux types de résultats.

(1) Si un objet est rigide, quels sont les paramètres qui le caractérisent.
(2) Si un objet est flexible, quelle est la taille et la forme de son espace de déformations.

Groupes de Morse.
Le cœur convexe d’une variété hyperbolique M = Γ\Hn est le plus petit ensemble convexe qui porte

toute la topologie de la variété (i.e sur lequel M se rétracte). Ce cœur convexe existe bien : c’est aussi
le quotient par Γ de l’enveloppe convexe dans Hn de Λ(Γ). Une variété hyperbolique est dite convexe-
cocompacte si son cœur convexe est compact. Le cœur convexe est encore l’ensemble récurrent de la
dynamique du flot géodésique; c’est donc le lieu où la dynamique a de bonnes propriétés ergodiques.
Dire qu’une variété est convexe-cocompacte revient à réclamer de bonnes propriétés topologiques (avoir
la topologie d’une variété compacte) ou dynamiques (après avoir coupé certains morceaux de la variété,
la dynamique vit sur un ensemble compact). Par extension on dit que le groupe Γ = π1(M) lui-même
est convexe-cocompact si M l’est. Noter que les cusps des variétés hyperboliques sont convexes et non
compacts et ils sont donc exclus de la théorie. Lorsqu’il s’agit de généraliser cette définition à d’autres
géométries locales, par exemple lorsque le revêtement universel est un espace symétrique quelconque, on
rencontre le problème suivant

Théorème 10 ([Qui05] et [KL06]). Soit G un groupe de Lie de rang supérieur à 2 et Γ un groupe discret,
irréductible et Zariski-dense de G. Si Γ est convexe-cocompact, alors Γ est cocompact.

Les hypothèses servent à éviter les ”fausses situations de rang 1”. On pourrait en effet considérer le
produit de deux variétés hyperboliques convexe-cocompactes qui mettraient le théorème en défaut; le fait
que le groupe soit supposé irréductible nous prévient d’une telle situation. On pourrait encore considérer
le cas d’un groupe de Lie de rang 2 (O(2, n)) qui contient un groupe de Lie de rang 1 (O(1, n)) et d’un
groupe qui s’injecte dans le sous-groupe de rang 1; c’est cette fois l’hypothèse de Zariski-densité qui
interdit cette situation.

Ainsi donc, en rang supérieur, la notion de convexe-cocompacité näıve ne produit pas d’autres exemples
que les réseaux cocompacts, par ailleurs bien étudiés ([Zim84]). Basé sur certaines caractérisations de
la convexe-cocompacité en rang 1 de [Bow95], l’article [KLP14b] propose une définition de la convexe-
cocompacité adaptée au rang supérieur. Les auteurs proposent en effet une définition de ”groupes de
Morse”, en référence à un certain lemme de Morse prouvé dans [KLP14a], qui cöıncide en rang 1 avec la
définition de la convexe-cocompacité.

Pour ne pas alourdir, l’exposition, il est sans doute préférable de ne retenir que deux propriétés fondamentales des groupes de Morse
(c’est en fait presque une caractérisation).

(1) Un groupe de Morse est Gromov-hyperbolique.
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(2) Les orbites d’un groupe de Morse Γ ne sont pas distordues, c’est-à-dire que les applications orbitales

Γ→ Γ · x

sont des quasi-isométries pour toute métrique de mots sur le groupe.

En rang 1, les groupes fondamentaux de variétés hyperboliques compactes sont Gromov-hyperboliques tandis que les cusps créent de la

distorsion.

Les groupes de Morse sont donc des groupes qui possèdent une action ”de type rang 1” (dans la
terminologie de [KLP14b]) sur un espace de rang supérieur. Et en tant que tels, il m’a semblé intéressant
d’étudier leurs propriétés de déformations. En effet, les groupes de rang 1 peuvent se comporter de bien
des façons différentes dans leurs possibilités de déformations : les réseaux sont flexibles en dimension 2
(espace de Teichmüller), rigides en dimension supérieures à 3 (théorème de Mostow) et il existe aussi

des phénomènes intermédiaires de semi-rigidité [Bes88]. Étudier les déformations des groupes de Morse
permet donc de les catégoriser.

Le théorème suivant donne une contrainte algébrique forte sur la possibilité de ”partir à l’infini” dans
l’espace des déformations.

Théorème 11 ([Mer16a]). Soit (ρn) une suite de représentations uniformément de Morse d’un groupe Γ

dans un espace symétrique M̃ . On suppose que la suite ρn dégénère de façon contrôlée. Alors le groupe
Γ se scinde en un produit libre de groupes de surfaces fermées et d’un groupe libre.

Plus simplement cet énoncé dit que pour que l’espace des déformations des variétés convexe-cocompactes
soit gros, il faut nécessairement s’appuyer sur un groupe ”de dimension 2”. C’est bien sûr un écho au
manque de rigidité de Mostow pour les groupes de surfaces fermées.

L’hypothèse de Morse uniforme fait référence aux constantes de quasi-isométries mais s’applique à des
métriques décrites au cours de la preuve suivante. L’hypothèse de dégénérescence contrôlée permet de
supposer que l’on peut choisir un système de générateur du groupe Γ dont chaque longueur de courbe
crôıt à la même vitesse. Noter que ces hypothèses ne sont pas outrageusement fortes puisque de telles
suites de représentations existent dans le cas d’un groupe libre pour les groupes de Schottky et dans le
cas des groupes de surfaces pour les représentations quasi-fuchsiennes [Ota01].

La preuve se propose de mettre en place les deux idées directrices suivantes.

Fait 1 : Partir à l’infini dans l’espace des représentations revient à considérer non plus une action du groupe Γ sur un espace

symétrique mais sur un immeuble affine. L’immeuble affine est le cone asymptotique de l’espace symétrique et s’obtient en ”dézoomant”
l’espace (c’est-à-dire en contractant la distance riemannienne, en ”regardant l’espace de plus loin”). Cette construction est une référence

directe aux travaux [Pau97] et [Par12].
Fait 2 : Lorsque l’on veut faire de la théorie géométrique des groupes, c’est-à-dire comprendre la structure d’un groupe par

l’intermédiaire de ses actions, il est beaucoup plus efficace de disposer d’une action sur un immeuble que d’une action sur un espace

symétrique. Une illustration de cette philosophie est le théorème de Rips [GLP94] qui classifie toutes les actions libres de groupes sur
des arbres.

La partie technique de la preuve consiste à montrer que l’on récupère une action de Morse sur l’immeuble à l’infini, que l’on peut
plonger un arbre dans cet immeuble (obtenu comme le cône asymptotique du groupe lui-même) puis chercher à appliquer le théorème
de Rips.

Espaces de Teichmüller universel et géométrie Anti-de Sitter.
Considérons un groupe de surface Γ = π1(Σg). La théorie de Teichmüller classique étudie la géométrie

de l’espace des représentations (fidèles et d’images discrètes) de Γ dans le groupe de Lie PO0(2, 1) qui
est le groupe des isométries directes du plan hyperbolique (précisément on identifie dans l’espace de
Teichmüller deux représentations qui sont conjuguées par un élément de PO0(2, 1)). Par ailleurs, il existe
une représentation canonique de PO0(2, 1) dans PO0(2, 2), qui est le groupes des isométries directes d’une
variété Lorentzienne, appelé l’espace Anti de Sitter (AdS).4

4Une définition simple de AdS consiste à prendre comme variété le groupe PSL2(R) lui-même et comme métrique, sa
métrique de Killing (renormalisée de sorte que la courbure soit exactement −1).
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Les représentations ρ : Γ → PO0(2, 2) ont attiré beaucoup d’attention récemment, en partie à cause
du fait que AdS est une des huit géométries-modèle de Thurston et que de telles représentations per-
mettent de construire des variétés qui sont localement modelées sur AdS (d’autres motivations provien-
nent de la physique, les géométries lorentziennes sont des modèles de l’espace-temps d’Einstein). Parmi
ces représentations, celles qui se factorisent par une représentation de Γ dans PO0(2, 1) sont appelés
représentations fuchsiennes; elles préservent un plan totalement géodésique (isométrique à H2) dans AdS
et en particulier un cercle dans le bord à l’infini de AdS.

De petites déformations ρt de ρ continuent à préserver au bord un objet qui est topologiquement un
cercle (mais géométriquement plus complexe) qu’on appelle quasi-cercle (et les représentations ρt sont
appelées quasi-fuchsiennes). Précisément, un quasi-cercle est une application f : RP1 → RP1 qui est
quasi-symétrique (i.e qui est l’extension au bord d’une application quasi-conforme du disque dans lui-
même).

Dans ce cas (quasi-fuchsien), le groupe ρt(Γ) préservent aussi l’enveloppe convexe de ce quasi-cercle,
qui est un convexe dans AdS (AdS est un sous-ensemble de l’espace projectif, la convexité s’entend au
sens projectif). Ce convexe est bordé par deux surfaces, chacune isométrique au plan hyperbolique mais
(convexité oblige), ces deux surfaces ne sont pas totalement géodésiques. Le lieu où ces surfaces ne
sont pas totalement géodésiques (c’est-à-dire, le lieu de stricte convexité) est une lamination géodésique
(dite lamination de plissage) et l’intensité de ce plissage est représenté par une mesure transverse à la
lamination.

Résumons-nous : à toute représentation quasi-fuchsienne dans PO0(2, 2), on peut associer un quasi-
cercle et une paire λ−, λ,+ de laminations mesurées. En fait, on peut même se passer de représentation
quasi-fuchsienne et considérer quasi-cercles et laminations indépendamment. On appelle espace de Te-
ichmüller universel, l’espace de tous les quasi-cercles (non nécessairement invariants sous l’effet d’une
représentation quasi-fuchsienne).

Dans notre travail en commun avec Jean-Marc Schlenker, nous étudions les relations entre ces différents
objets. Nous obtenons en particulier le résultat suivant.

Théorème 12 ([MS20]). Soit λ−, λ+ un couple de laminations remplissantes. Alors il existe un quasi-
cercle au bord de AdS dont l’enveloppe convexe est bordée par deux surfaces plissées par les laminations
λ− et λ+.

Ce résultat répond à une conjecture de Thurston dans le cas AdS. L’hypothèse de laminations ”rem-
plissantes” n’est pas optimal mais fréquent (c’est le cas en particulier des laminations qui sont obtenues
par des représentations quasi-fuchsiennes). Ce résultat a des conséquences sur la dynamique des ”trem-
blements de terre” dans l’espace de Teichmüuller universel.

Du théorème de Cauchy au problème de Weyl.
Le résultat précédent s’inscrit dans une longue histoire de rigidité/flexibilité qui aboutit au problème

de Weyl (le théorème 12 en est un cas particulier). Nous décrivons maintenant la genèse de ce problème.
On s’intéresse tout d’abord à des polyèdres dans la sphère S3, l’espace euclidien E3 ou l’espace hyper-

bolique H3. On peut associer à un polyèdre plusieurs familles d’invariants :

(1) Ses angles dièdres (les angles entre ses faces).
(2) Son type combinatoire (qui est un graphe).
(3) La longueur de ses arêtes.
(4) La géométrie de ses faces.

La donnée de 1. et 2. s’exprime sous forme de graphe (planaire) étiqueté. La question de la rigidité
se formule en demandant sous quelles hypothèses on peut affirmer que la donnée d’un ou plusieurs de
ces familles d’invariants caractérise un unique polyèdre (on peut aussi demander une rigidité forte qui
exclut même les déformations du premier ordre, on parle alors de rigidité infinitésimale). Et celle de la
flexibilité en demandant qu’après avoir fixé un ou plusieurs de ces invariants (plus éventuellement d’autres
contraintes), quels sont les polyèdres réalisables avec ces invariants. Nous renvoyons au paragraphe 3.3.2
pour des questions ouvertes, voici maintenant un bref survol des résultats connus.
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(1) Le premier résultat est un théorème de Cauchy (dont la preuve mérite un chapitre du Livre d’Erdös [AZ14, chapitre 12]). Il

affirme que si deux polyèdres convexes ont mêmes types combinatoires et mêmes géométries des faces, ils sont isométriques.
Autrement dit, parmi les polyèdres convexes, le type combinatoire et la géométries des faces déterminent les angles dièdres.

Ce théorème est faux pour des polyèdres non convexes.

(2) Des polyèdres flexibles existent. R. Connelly dans [Con77] a construit (contre toute attente) une famille a un paramètre de
déformations d’un polyèdre (nécessairement non convexe) qui préserve la géométrie des faces. Ces exemples sont rares.

(3) Plusieurs familles de polyèdres non convexes sont aussi rigides [CS10] et [IS10]

(4) La conjecture de Stoker est une conjecture de rigidité lorsque le polyèdre est convexe et lorsque les angles dièdres sont fixés.
Elle est plus limpide dans le cas hyperbolique (les angles dièdres déterminent le polyèdre) alors qu’il faut prendre quelques

précautions dans le cas euclidien (penser au cas d’un cube et d’un pavé par exemple). Dans ce cas, elle prétend que toute
déformation qui préserve les angles dièdres préserve aussi les angles internes aux faces.

(5) Cette conjecture est fausse dans le cas sphérique [Sch00].

(6) Elle est démontrée en toute généralité (dans sa version infinitésimale) dans [MM11].
(7) Enfin, d’après un théorème de [HR93], un polyèdre convexe est déterminé par d’autres invariants comme son dual dans l’espace

de Sitter.

Le problème de Weyl est une vaste extension du résultat de rigidité de Cauchy. Dans sa version
classique, il demande si toute métrique de courbure positive sur la sphère peut se réaliser de manière
unique comme comme la métrique induite au bord d’un convexe de R3. Les polyèdres correspondent
à des métriques plates à singularité et sont donc un cas particulier. Ce problème original de Weyl est
maintenant résolu, ainsi que son extension dans le cas hyperbolique [Pog73].

Qu’en est-il du cas des convexes non bornés ? La bonne question peut sembler difficile à formuler
: le plan hyperbolique admet en effet une infinité de plongement totalement géodésiques dans H3. On
espère alors que l’ajout de certaines condition sur le comportement à l’infini permette d’obtenir un énoncé
satisfaisant. Parmi ces conditions à l’infini on par exemple le fait de rencontrer le bord en un quasicercle.
Dans ce cas, le bord du convexe découpe donc le bord de H3 en deux composantes connexes, attachées
l’une à l’autre le long du quasicercle par une application que l’on appelle application de recollement. On
parvient alors aux deux conjectures suivantes, énoncées dans [Sch20].

Conjecture 13 (Problème de Weyl généralisé, version H3). Soit ε > 0 et soit g−, g+ deux métriques
de courbure constante K ∈ [−1 + ε,−ε] sur le disque D. Soit u : ∂∞(D, g−) 7→ ∂∞(D, g+) un homéo
quasisymétrique. Existe-t-il un unique convexe Ω ⊂ H3 dont le bord à l’infini est un quasicercle, de sorte
que les métriques induites sur les deux composantes connexes de Ω soient g− et g+ et que l’application de
recollement soit u ?

Conjecture 14 (Problème de Weyl généralisé, version AdS3). Soit ε > 0 et soit g−, g+ deux métriques
de courbure constante K ∈

[
−1− 1

ε ,−1− ε
]

sur le disque D. Soit u : ∂∞(D, g−) 7→ ∂∞(D, g+) un

homéomorphisme quasisymétrique. Existe-t-il un unique convexe Ω ⊂ AdS3 dont le bord à l’infini est un
quasicercle, de sorte que les métriques induites sur les deux composantes connexes de Ω soient g− et g+

et que l’application de recollement soit u ?

Le résultat d’existence dans ces deux conjectures est connu et fait l’objet de [BDMS19].
Lorsque K → −1 et ε→ 0, les surfaces de courbure constante sont remplacées par des surfaces plissées,

de sorte que le théorème 12 constitue la partie existence du cas limite du problème de Weyl dans AdS3.

3. Programme de recherche

Les projets de recherches présentés dans cette section sont séparés en deux niveaux de difficulté. Les
questions rouges sont celles qui requièrent un peu d’investissement et un travail de plus longue haleine.
Les questions bleues sont celles qui sont accessibles immédiatement avec les outils de mon champs de
compétence. Sauf mauvaise surprise, chaque question est réaliste et on donne à chaque fois une idée de
stratégie.
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3.1. Invariants globaux des variétés riemanniennes.

3.1.1. Dimension de Hausdorff de l’ensemble limite des groupes de Schottky. Il s’agit de la poursuite de
notre collaboration avec Florent Balacheff et fait partie du programme général décrit en 2.2.2. Dans
[BM20], nous relions en effet entropie volumique et bas du spectre des longueurs d’une variété rieman-
nienne compacte. Nous étudions maintenant l’entropie volumique des surfaces à bord. Pour les surfaces
hyperboliques, cela revient à étudier la dimension de Hausdorff des groupes libres (aussi appelés groupes
de Schottky) agissant sur H2. Ce projet est en fait double, l’un des aspects est purement hyperbolique,
l’autre est riemannien.

Question 1 Soit (S,hyp) une surface hyperbolique à bord non vide. Peut on trouver une expression de
l’entropie volumique de S comme une fonction des coordonnées de Fenchel-Nielsen de la surface.

L’approche la plus efficace pour calculer une dimension de Hausdorff consiste à utiliser le ”formalisme thermodynamique [Jae14]

ou [BCS18]. La théorie nous apprend que le problème revient à calculer l’entropie d’un certain graphe (métrique) et notre résultat
précédent [BM20] s’applique.

Au-dela de la géométrie hyperbolique, on peut déposer sur une surface à bord n’importe quel type de
métrique et se demander comment se comporte l’exposant critique du groupe en fonction de la métrique
et poser la question suivante, motivée en partie par le projet décrit au paragraphe 3.3.4.

Question 2 Soit (S,hyp) une surface hyperbolique à bord non vide et soit g une autre métrique sur S
de même volume et qui rende le bord géodésique et de même longueur que le bord hyperbolique. On note
δ0 l’exposant critique du groupe fondamental Γ calculé avec la métrique hyperbolique et δ celui calculé
avec la métrique g. A-t-on alors δ > δ0 ?

Il est peu réaliste de pouvoir obtenir une inégalité optimale. Toute les idées de preuve de la conjecture d’entropie minimale s’appuient
en effet lourdement sur le fait que l’ensemble limite d’un groupe compact est le bord tout entier. Cela simplifie en effet énormément le

calcul des mesures de Patterson-Sullivan.

En revanche, on peut s’attendre à obtenir une inégalité non optimale en faisant marcher les idées originelles de Gromov (techniques
de smoothing) qui conduisaient déjà à des version non optimales de la conjecture d’entropie minimale dans [Gro83]. Ces techniques

sont plus souples et pourraient fonctionner dans le cas des surfaces à bord.

Les variétés de Morse ne peuvent être compactes lorsque le rang du groupe de Lie d’isométries de M̃
est supérieur à 2. En effet, un groupe cocompact dans un groupe de rang supérieur n’est pas Gromov-
hyperbolique. Ainsi, l’ensemble limite du groupe de Morse Γ ne remplit pas toute la sphère à l’infini
∂∞M̃ et il y a un intérêt certain à comprendre les propriétés de cet ensemble limite. Le problème que
nous décrivons dans ce paragraphe constitue un prolongement de [Mer16a], au sens où nous cherchons à
classifier les groupes de Morse en comparant leur comportement à des phénomènes de rang 1. En effet,
les variétés hyperboliques réelles convexe-cocompactes ont un ensemble limite dont la dimension peut être
arbitrairement proche de n−1 = dim ∂∞Hn

R [Sul79]. Alors que les variétés hyperboliques quaternioniques
convexe-cocompactes ont un ensemble limite dont la dimension est uniformément distante de dim ∂∞Hn

Q
[Cor90] (le cas complexe n’est pas connu). Pour le rang supérieur [Qui03] tend à indiquer que la situation
pourrait être celle du cas quaternionique. Repenser son approche dans le cas des groupes de Morse
permettrait de répondre à la question suivante.

Question 3 La dimension de Hausdorff de l’ensemble limite d’un groupe de Morse est-elle arbitrairement
proche de dim ∂∞M̃ ?

Noter que plusieurs caractérisations de la propriété de Morse sont démontrées dans [KLP14b], deux d’entre elles sont particulièrement
adaptées à la situation puisqu’elles sont exprimées en terme de dynamique du groupe à l’infini. Une prépublication récente [GMT19]

compare aussi la dimension de Hausdorff de l’ensemble limite avec un certain exposant critique.
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3.1.2. Différents problèmes d’entropie minimale. Revenons au cas de l’entropie. Les méthodes de [Mer16b]
en utilisant la cohomologie bornée du groupe fondamental ont une extension naturelle pour l’espace
symétrique dont le groupe de Lie est SP2n(R), l’espace de Siegel. En effet le cocycle borné qui a servi
à conclure la preuve du théorème 5 possède un équivalent direct pour le groupe SP2n(R) : le cocycle de
Maslov de [BG92]. Je me suis beaucoup penché sur la question et je n’en ai pour l’instant tiré qu’une
inégalité de calibration approchée, non optimale. Cela est probablement du à la technicité supérieure de
plusieurs aspects du problème. Bien qu’une telle inégalité ne soit déjà pas sans intérêt (elle démontre en
particulier que l’entropie minimale est strictement positive), il existe probablement un moyen de terminer
le calcul.

Question 4 Démontrer une inégalité d’entropie minimale pour un quotient compact de l’espace de
Siegel (ou se contenter d’une inégalité approchée).

Toujours pour le même problème d’entropie minimale, il est permis de penser que le cas des espaces
symétriques hermitiens est accessible en toute généralité (voir une proposition d’approche plus bas).

Question 5 Démontrer un résultat d’entropie minimale pour les espaces symétriques hermitiens.

La spécificité des espaces hermitiens vis-à-vis du problème d’entropie minimale tient au fait que la forme kählérienne d’un espace

hermitien vérifie une certaine inégalité, adaptable à la calibration, l’inégalité de Wirtinger [Fed69, p. 40]. Cette inégalité bien connue a

déjà servie dans le contexte des surfaces minimales en tant qu’inégalité de calibration : [HL82] et [Ber72] et même pour le problème de
l’entropie minimale de H2 : [BCG95, chapitre 6]. Elle affirme que toute sous-variété complexe est calibrée par une puissance adaptée

de la forme kählérienne. Bien sûr, cette seule remarque ne suffit pas puisqu’il faut encore trouver un moyen d’amener cette forme de

Kähler sur l’espace des mesures au bord, ce qui n’a rien de naturel. Voici cependant comment cela fonctionne dans H2. Noter que H2

est lui-même un espace hermitien (c’est une droite hyperbolique complexe). Le groupe des difféomorphismes du cercle, Diff(S1) agit sur

l’espace des mesures par changement de variables et l’orbite de la fonction constante 1 est dense. Dans l’article [KY87], cette orbite est

pensée comme un espace homogène,

Diff(S1)/S1.

C’est un espace kählérien : pour la structure complexe, il suffit de prendre une fonction dans l’orbite de Diff(S1), de la décomposer en
série de Fourier, (ce qui donne un système de coordonnées), puis de changer cos(n·) en sin(n·) et sin(n·) en − cos(n·), c’est-à-dire que

Diff(S1)/S1 est un produit de plans complexes. La forme kählérienne est précisément la forme calibrante que nous construisons avec la

méthode du cocycle de la page 9. Dans [Kir04], il est expliqué que toute orbite coadjointe jouit de telles propriétés. Pour implémenter
cette méthode au cas des espaces hermitiens complexes, il faut donc

(1) Soit comprendre comment construire sur l’espace de mesures sur le bord une structure complexe à partir de la structure
complexe de l’espace hermitien.

(2) Soit interpréter l’espace des mesures (un ensemble dense suffirait) comme une orbite coadjointe sous l’action d’un ”groupe de

Lie” de dimension infinie. Cela demande de clarifier certains problèmes de régularité (c’est d’ailleurs un enjeu indépendant)
inhérent à ce type de contexte.

Nous avons vu les rapports qu’il existe entre entropie minimale, calibration et cohomologie bornée. En
fait, il se pourrait que les liens soient encore plus étroits.

La norme d’une classe de cohomologie bornée [c] est la quantité

‖[c]‖ = inf
c′∼c

∣∣c′∣∣
Pour calculer cette norme, il faut donc trouver le cocycle c′ cohomologue à c et de plus petite norme absolue. Dans [Mer16b], je
montre que la forme calibrante se construit avec le cup produit de classes d’Euler (toujours avec la méthode de 9). Dans [BK08],

M. Bucher-Karlsson montre que ce même cocycle réalise la norme de sa classe. Cette troublante analogie nous conduit à formuler la
question suivante

Question 6 Est-il vrai qu’un cocycle qui réalise la norme de sa classe donne une forme calibrante ?

Cette question semble difficile mais se découpe en deux parties qui sont indépendantes et plus faciles. En effet, si on suppose que

le cocycle qui réalise la norme est nul sur les cobords (c’est le cas du cocycle de [BK08]), cette condition s’interprète très facilement
du côté de la forme différentielle associée et permet d’en tirer beaucoup d’informations. Ainsi donc, il s’agirait de montrer que cette
condition est toujours réalisée et qu’elle simplifie largement le problème de la calibration.
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La question réciproque de la question précédente peut se poser aussi mais je n’ai pas d’opinion sur une
façon de l’attaquer.

L’entropie minimale des espaces symétriques est aussi reliée au volume minimal de la page 7. En effet,
par l’intermédiaire de la formule de Bishop, l’entropie peut être vue comme une version éparpillée de la
courbure de Ricci : une hypothèse de courbure de Ricci se transmet à l’entropie. L’inégalité de Bishop
n’est optimale que dans le cas hyperbolique réel puisqu’elle revient à comparer les volumes de boules à
ceux du modèle de courbure constante. Besson, Courtois et Gallot montrent alors dans [BCG95] que le
volume minimal d’une variété qui supporte une métrique hyperbolique réelle est donné par la métrique
hyperbolique.

Question 7 Adapter l’inégalité de Bishop à d’autres modèles localement symétriques. En déduire des
résultats sur le volume minimal pour de espaces localement symétriques de rangs supérieurs.

Une dernière avancée dans le problème de l’entropie des espaces localement symétriques concerne les
variétés non compactes mais de volume fini. Dans ce cas, il est courant de remplacer l’entropie de la
métrique g par l’exposant critique du groupe. C’est d’ailleurs ce que font [BCS05] et [Sto06]. Une fois
cette convention posée, le problème se formule comme dans le cas compact.

Question 8 Démontrer un théorème d’entropie minimale pour des quotients non compacts de
(
H2
)n

lorsque les métriques g et g0 sont de volume fini.

En plus de remplacer l’entropie de g par l’exposant critique du groupe fondamental, [Sto06] décrit les autres ajustements à effectuer.
Une des étapes de la preuve dans le cas compact fait usage du théorème de Stokes dans un domaine fondamental pour l’action du

groupe. Ce théorème nécessite bien sûr de la compacité. Le remède revient alors à appliquer le théorème de Stokes sur une exhaustion

par des compacts du domaine fondamental et à contrôler le reste qui est le volume des plongements Φg dans les cusps. La géométrie des

cusps des variétés modelées sur
(
H2
)n

est bien comprise, ce sont des variétés SOL (voir aussi [CF03] qui traite du cas non compact).

3.2. Géométrie métrique.

3.2.1. Les problèmes d’entropie minimale dans des contextes métriques. La première question de ce para-
graphe m’a été posée par F. Paulin à Orsay. Elle vise à établir des variantes des résultats d’entropie
minimale lorsque la géométrie est modelée sur celle d’un immeuble. Le cas des arbres est déjà bien connu,
[Lim08] et [KN07] et va dans le sens du théorème riemannien : la métrique d’entropie minimale sur le
quotient d’un arbre régulier (dont tous les sommets ont mêmes valences) est la métrique ”symétrique”,
celle qui donne le même poids à chaque arête.

Dans le cas des immeubles, la question est trop difficile en toute généralité mais il y a un analogue
d’un cas riemannien étudié dont le résultat correspondant dans les immeubles n’a pas été établi : celui
des produits d’arbres. Soit donc M un complexe cubique dont le revêtement universel est un produit
d’arbres réguliers. On munit M de la métrique g0 qui est euclidienne dans chaque cube et qui dépose une
métrique ”symétrique” sur chaque facteur du 1-squelette. Les métriques g que l’on veut comparer à g0

sont des métriques riemanniennes quelconque dans l’intérieur des cubes qui rendent géodésiques (au sens
euclidien) les bords de ces cubes.

Question 9 Montrer que g0 minimise l’entropie parmi toutes les métriques g de mêmes volumes.

Les principaux ingrédients de la preuve riemannienne existent toujours dans ce contexte des immeubles. En effet, les mesures de
Patterson-Sullivan sont construites de façon similaire dans ce cadre [Qui02] ainsi que le barycentre des mesures [Pau96]. Il s’agit de

faire jouer le même rôle à ces objets.

Reprenons une dernière fois le cadre classique des espaces symétriques. Dans [Ver99], l’auteur mon-
tre que la métrique symétrique (en rang supérieur) ne minimise plus l’entropie parmi les métriques
finslériennes de volume fixé. Il construit une métrique de Finsler qui minimise l’entropie mais seulement
parmi les métriques qui sont G-invariantes (pour définir une métrique sur le quotient, la Γ-invariance
suffirait). Ses méthodes sont différentes des techniques de la page 9, de nature plus algébrique. Il est
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conjecturé que la métrique de P. Verovic minimise l’entropie parmi toutes les métriques de Finsler Γ-
invariantes. Répondre à cette conjecture semble difficile. La question suivante serait une première étape
(et d’un intérêt indépendant).

Question 10 Peut on construire une famille de mesure de Patterson-Sullivan associée à la métrique
finslérienne de [Ver99] ?

En rang supérieur, les groupes co-compacts ne sont pas des groupes de Morse. Néanmoins, récemment dans [DK19], les auteurs

construisent cette famille de mesure dans le cas des groupes de Morse. C’est une grande source d’inspiration pour la question précédente.
On pourrait aussi en déduire une profonde analyse de la dynamique du flot géodésique de cette géométrie.

3.2.2. Retour aux géométries de Hilbert. Deux questions naturelles pourraient constituer une suite du
travail avec J. Cristina de [CM16] dans l’étude des géométries de Hilbert de basse régularité. On rappelle
que nous calculons l’entropie finslérienne des convexes de régularité α-Ahlfors en fonction de α. D’autre
part, [BBV10] montre que si la régularité est de classe à C1,1, l’entropie est maximale, égale à 1. Or,
il existe encore des espaces de Banach intermédiaires qui sont contenus dans tous les espaces C1,α mais
qui contiennent strictement C1,1. Cela conduit à se demander où est précisément le point de bifurcation
d’entropie extrémale.

Question 11 Existe-t-il un espace de Banach qui contienne dans tous les espaces C1,α et qui contienne
une fonction qui engendre un convexe d’entropie strictement inférieure à 1. Existe-t-il un espace de
Banach qui contient tous les espaces C1,α et contenu strictement dans C1,1 qui permettent de construire
des phénomènes mixtes entropie maximale/entropie inférieure à 1. Qu’en est il des mêmes phénomènes
dans le cas opposé de l’entropie nulle ?

Noter que c’est aussi en basse régularité que l’on peut construire des exemples où l’entropie n’existe
pas. La question de savoir où se situe précisément ce type de phénomènes est donc reliée.

Question 11 bis Pour quels espaces de régularités peut-on affirmer que h = h ?

Les techniques de calcul d’entropies en basse régularité de notre article commun sont largement réutilisables puisqu’elles se proposent
de faire usage de la dérivée seconde (au sens faible) et de relier les valeurs de l’entropie aux propriétés de l’espace métrique mesuré

donné par le support de la dérivée seconde (qui est une mesure).

3.3. Rigidité/Flexibilité.

3.3.1. Représentations de groupes discrets. J’ai identifié dans [Mer16a] les situations où les représentations
de Morse sont très flexibles et où l’espace des déformations est non compact. Comme annoncé à la section
2.2.4, l’objectif suivant est d’analyser la forme de l’espace des représentations. La question est trop vague
si on ne fixe pas le groupe de Lie G, image des représentations et ne me semble en fait accessible avec les
outils actuels que dans le cas où G =SP2n(R). Il existe bien sûr des métriques naturelles sur l’espace des
représentations mais il est naturel de s’intéresser dans un premier temps à la topologie de cet espace.

Question 12 Quelle est la topologie de l’espace des représentations de Morse d’un groupe de surface
dans SP2n(R) ?

Une approche possible consiste à analyser le travail [BP15]. En effet les auteurs identifient des zones sur la surface (fixant une

métrique hyperbolique annexe) pour lesquelles l’action du sous-groupe correspondant à la sous-surface est plus facile à comprendre,

notamment par l’intermédiaire de son action sur le cône asymptotique de l’espace de Siegel.
Cela permet probablement de mettre en place une stratégie calquée sur la preuve de la simple connexité de l’espace de Teichmüller;

les sous-surfaces de [BP15] jouant le rôle de la décomposition en pantalons, voir [tei91].
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Toujours dans le cas des représentations de surface dans SP2n(R), la question suivante est mentionnée
en toute généralité dans la thèse de M. Wolff mais semble se simplifier dans le cas des représentations de
Morse. La motivation associée à ce problème est que sa résolution permet de décrire une compactification
de l’espace des représentations. Bien sûr, la démarche consiste à suivre celle de [Wol11].

Question 13 Soit (ρn)n une suite divergente de représentations de Morse d’un groupe de surface dans
SP2n(R). On suppose que la classe de Maslov de ρn est constante. Peut on définir une classe de Maslov
de l’action limite du groupe de surface sur l’immeuble de type SP2n ?

3.3.2. Rigidité des polyèdres pour la géométrie de Hilbert. C’est une partie de mon projet de recherche en
commun avec J.M. Schlenker à Luxembourg. Elle s’articule autour de deux questions et les polyèdres en
sont les objets principaux.

Rappelons tout d’abord que la distance de Hilbert est définie pour les points à l’intérieur d’un convexe
de l’espace projectif. On se demande alors quelle structure peut avoir l’extérieur d’un convexe. Supposons
d’abord que l’ensemble convexe est défini par une équation algébrique. Nous complexifions alors le convexe
en complexifiant sont équation. Puis, par le théorème de Bezout, le droite complexe engendrée par deux
points à l’extérieur du convexe rencontre le complexe complexifié en un certain nombre de paires de
nombres complexes conjugués. On forme alors un birrapport en utilisant ces intersections complexes.

Les motivations pour cette construction sont nombreuses. Tout d’abord, cela permet de définir des
angles dièdres pour les arêtes d’un polytope en géométrie de Hilbert. En effet le dual d’un polytope à
l’intérieur d’un convexe est un polytope à l’extérieur du convexe dual. Il s’agit donc de définir un angle
en utilisant la relation classique angle dièdre d’une arête = longueur de l’arête duale du polyèdre dual.
Cette notion d’angles dièdres vient avec une formule de Schläffli, une formule variationnelle qui donne la
dérivée du volume d’un polytope en fonction de la dérivée de ses angles dièdres. C’est une formule clé
dans l’étude de la rigidité des polyèdres euclidiens. C’est donc naturellement que nous posons la question
suivante.

Question 14 Étudier les propriétés de la distance définie en dehors d’un convexe projectif et l’utiliser
pour construire une formule de Schläffli adaptée. À l’aide de cette formule, généraliser la classe des
polyèdres rigides à une classe plus vaste.

Cette question s’inscrit aussi dans le contexte général du problème de Weyl.
Le dessin suivant a été fait avec un programme Sagemath. La partie rouge représente le convexe

x6 + y6 = 1, la partie bleue est le graphe de la fonction ”défaut d’inégalité triangulaire” pour la distance
décrite plus haut. La partie grise représente le lieu ou cette fonction est négative, c’est-à-dire le lieu ou
la distance vérifie une inégalité triangulaire inverse. On constate ici la cohérence avec le cas géométrie
hyperbolique/géométrie de Sitter.
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3.3.3. Retour au problème de Weyl. D’après le paragraphe 2.2.4, à un couple de laminations remplissantes
correspond un quasi-cercle au bord de l’espace AdS qui permet de reconstruire les deux laminations comme
laminations de plissage au bord de l’enveloppe convexe d’un quasi-cercle. La question se pose aussi pour
un quasi-cercle au bord de l’espace hyperbolique H3.

Question 15 Soit (λ+, λ−) un couple de laminations remplissant sur le disque D2. Il existe alors une
application u : RP1 → CP1 dont l’image est un quasi-cercle tel que son enveloppe convexe dans H3 soit
borné par deux surfaces plissées le long de λ+ et λ−.

La réponse à cette question est connue dans le cas quasi-fuchsien [BO04].

Pour démontrer le théorème 12, nous utilisons un processus d’approximation du couple de laminations par des laminations polyédrales.

Ce résultat d’approximation est encore vrai dans le cas hyperboliques et on peut donc envisager de récupérer une partie de la preuve.

Dans la cas AdS, il est facile de contrôler géométriquement la divergence des constantes de quasi-symétrie du quasi-cercle (controler
les constantes de quasi-symétrie permet d’utiliser des résultats de précompacité dans les applications quasi-fuchsiennes de constantes

bornées), la divergence correspond à l’apparition d’un certain quasi-cercle très concret appelé le rhombus dans [BDMS19]. Dans le cas

hyperbolique, la discussion doit s’accompagner d’un lemme de ”non bubbling off” qui joue le même rôle. La démarche est entreprise
dans [BO04].

3.3.4. Stabilité C0 de l’entropie topologique. Dans un projet en cours avec Marcelo Alvès (Bruxelles), Lucas
Dahinden (Heidelberg) et Matthias Miewes (Aachen), nous étudions la régularité de l’entropie comme
fonction de la métrique en topologie C0 (i.e on s’intéresse à des déformations continues de métriques
(lisses)).

Voici par exemple l’un des projets qui nous tient à cœur. Le théorème de Denvir-Mackay [DM98] affirme
que si une métrique sur le tore T2 admet une géodésique fermée contractile, son entropie est positive.

Question 16 Au voisinage (C0) d’une telle métrique sur le tore, l’entropie est elle positive ?

Noter que la question 2 permet de répondre positivement à cette question (même avec une inégalité non optimale). En effet, par la
théorie de Morse, les métriques au voisinage de celle considérée par Denvir-Mackay satisfont à la même propriété d’avoir une géodésique

fermée contractile. Par ailleurs la longueur de cette géodésique est continue en topologie C0.
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[Cra09] Mickaël Crampon. Entropies of strictly convex projective manifolds. J. Mod. Dyn., 3(4):511–547, 2009.
[CS10] Robert Connelly and Jean-Marc Schlenker. On the infinitesimal rigidity of weakly convex polyhedra. European J.

Combin., 31(4):1080–1090, 2010.
[DK19] Subhadip Dey and Michael Kapovich. Patterson-sullivan theory for anosov subgroups. 2019.
[DM98] J. Denvir and R. S. MacKay. Consequences of contractible geodesics on surfaces. Trans. Amer. Math. Soc.,

350(11):4553–4568, 1998.
[Ebe96] Patrick B. Eberlein. Geometry of nonpositively curved manifolds. Chicago Lectures in Mathematics. University of

Chicago Press, Chicago, IL, 1996.
[Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153.

Springer-Verlag New York Inc., New York, 1969.
[Fri17] Roberto Frigerio. Bounded cohomology of discrete groups, volume 227 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, 2017.
[GHL04] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Universitext. Springer-Verlag,

Berlin, third edition, 2004.



PROGRAMME DE RECHERCHE COMPLET 23

[GLP94] D. Gaboriau, G. Levitt, and F. Paulin. Pseudogroups of isometries of R and Rips’ theorem on free actions on
R-trees. Israel J. Math., 87(1-3):403–428, 1994.

[GMT19] Olivier Glorieux, Daniel Monclair, and Nicolas Tholozan. Hausdorff dimension of limit sets for projective Anosov
representations. arXiv e-prints, page arXiv:1902.01844, Feb 2019.

[Gro82] Michael Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math., (56):5–99 (1983), 1982.
[Gro83] Mikhael Gromov. Filling Riemannian manifolds. J. Differential Geom., 18(1):1–147, 1983.
[HL82] Reese Harvey and H. Blaine Lawson, Jr. Calibrated geometries. Acta Math., 148:47–157, 1982.
[HR93] Craig D. Hodgson and Igor Rivin. A characterization of compact convex polyhedra in hyperbolic 3-space. Invent.

Math., 111(1):77–111, 1993.
[IS10] Ivan Izmestiev and Jean-Marc Schlenker. Infinitesimal rigidity of polyhedra with vertices in convex position. Pacific

J. Math., 248(1):171–190, 2010.
[Jae14] Johannes Jaerisch. Fractal models for normal subgroups of schottky groups. Transactions of the American Mathe-

matical Society, 366(10):5453–5485, 2014.
[KH97] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathe-

matics and its Applications. Cambridge University Press, 1997.
[Kir04] A. A. Kirillov. Lectures on the orbit method, volume 64 of Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 2004.
[KL97] Bruce Kleiner and Bernhard Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst.

Hautes Études Sci. Publ. Math., (86):115–197 (1998), 1997.
[KL06] Bruce Kleiner and Bernhard Leeb. Rigidity of invariant convex sets in symmetric spaces. Invent. Math., 163(3):657–

676, 2006.
[KLP14a] M. Kapovich, B. Leeb, and J. Porti. A Morse Lemma for quasigeodesics in symmetric spaces and euclidean

buildings. ArXiv e-prints, November 2014.
[KLP14b] M. Kapovich, B. Leeb, and J. Porti. Morse actions of discrete groups on symmetric space. ArXiv e-prints, March

2014.
[KN07] Ilya Kapovich and Tatiana Nagnibeda. The Patterson-Sullivan embedding and minimal volume entropy for outer

space. Geom. Funct. Anal., 17(4):1201–1236, 2007.
[KY87] A. A. Kirillov and D. V. Yur′ev. Kähler geometry of the infinite-dimensional homogeneous space M =

Diff+(S1)/Rot(S1). Funktsional. Anal. i Prilozhen., 21(4):35–46, 96, 1987.
[Lee97] John M. Lee. Riemannian manifolds, volume 176 of Graduate Texts in Mathematics. Springer-Verlag, New York,

1997. An introduction to curvature.
[Lim08] Seonhee Lim. Minimal volume entropy for graphs. Trans. Amer. Math. Soc., 360(10):5089–5100, 2008.
[Man79] Anthony Manning. Topological entropy for geodesic flows. Ann. of Math. (2), 110(3):567–573, 1979.
[Mer16a] L. Merlin. A note on degenerations of Morse actions. ArXiv e-prints, December 2016.
[Mer16b] Louis Merlin. Minimal entropy for uniform lattices in product of hyperbolic planes. Comment. Math. Helv.,

91(1):107–129, 2016.
[Mil68] J. Milnor. A note on curvature and fundamental group. J. Differential Geometry, 2:1–7, 1968.
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