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1. INTRODUCTION
1

Le domaine de recherche présenté dans ce texte mélange géométrie riemannienne, géométrie métrique et
théorie des groupes de Lie. Dans ce vaste contexte, les variétés différentielles sont les objets principaux,
en tant que lieux privilégiés pour faire de la géométrie. Le concept (toujours réalisable) de métrique
riemannienne permet a ’espace topologique sous-jacent a une variété d’étre enrichi par la présence d’objets
de nature métrique. Il permet en effet de disposer des notions de distance, d’angles, d’'une mesure de
volume puis des notions plus sophistiquées de géodésiques (droite de plus court chemin localement) ou de
courbure par exemple. L’étude de ces variétés riemanniennes a révélé une théorie tres importante, tres
dynamique de nos jours, riche d’interconnexions avec les autres branches des mathématiques.

Un cas particulier tres important de cette théorie est celui des espaces symétriques. Les géométries
symétriques sont celles qui possédent un tres gros groupe d’isométries. C’est le cas des familles d’exemples
les plus répandues (géométrie sphérique, euclidienne ou hyperbolique) mais aussi d’autres espaces ho-
mogenes (l'espace des formes quadratiques définies positives de déterminant 1, SL,(R)/ SO, (R), par

IN.B : Cette introduction est rédigé dans un style informel. Les définitions précises se trouvent a la section 2
1
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exemple). Un fait remarquable dans cette situation est que ’étude géométrique d’un espace symétrique
(simplement connexe) peut étre menée de facon purement algébrique. C’est ainsi qu’apparait la struc-
ture d’algebre de Lie qui sert dans cette situation a décoder les phénomenes géométriques. Un théoreme
d’uniformisation permet de ramener I’étude des variétés métriques completes localement modelées sur un
espace symétrique a celui des sous-groupes discrets d’un groupe de Lie. La correspondance consiste a
passer de la variété au groupe en prenant le groupe fondamental et du groupe a la variété en considérant
le quotient du revétement universel (qui est un espace symétrique) par le groupe, qui agit par isométries.
La taille du groupe d’isométries (et donc la possibilité de créer beaucoup de sous-groupes discrets) ex-
plique pourquoi ces géométries symétriques sont tres répandues. Dans I’espoir de montrer qu’une situation
symétrique est en fait une situation générique, la géométrie riemannienne fournit aussi des outils dits de
”comparaison” .

L’attention portée ici aux espaces symétriques implique que les méthodes different des méthodes rie-
manniennes habituelles. La géométrie riemannienne se propose en effet de développer des outils de nature
différentielle, par l'intermédiaire de champs de tenseurs sur la variété. Les résultats de la théorie con-
siste alors & interpréter géométriquement (ou au moins topologiquement) le comportement de ces tenseurs.
Cependant, lorsque le groupe des isométries est suffisamment gros, on peut espérer raisonner différemment,
et faire par exemple fonctionner le principe selon lequel

Quitte a faire agir le groupe, on peut supposer que ...

...]la situation est explicite et plus simple. Le premier objectif de ce projet est d’amener a une meilleur
compréhension des invariants géométriques globaux définis sur un espace symétrique, ou plus généralement
sur une structure différentielle qui supporte une métrique symétrique et cela constitue mon activité de
recherche principale. Parmi les invariants globaux considérés, I’entropie volumique, le volume, le volume
minimal, la systole et la cohomologie sont les plus importants (2.1.2).

Plus récemment, la géométrie riemannienne a aussi trouvé une porte d’entrée dans 1’étude des espaces
métriques (qui ne sont pas nécessairement des variétés), notamment par I'intermédiaire d’une définition
purement métrique de la courbure négative. C’est pourquoi on trouvera aussi dans ce texte des projets
consacrés a la géométrie des immeubles ou aux géométries de Hilbert. Les immeubles sont aux espaces
symétriques ce que les arbres sont a ’espace hyperbolique : des espaces singuliers mais dont les pro-
priétés géométriques a grande échelle possede des points communs avec la géométrie symétrique (et avec
un groupe d’isométries omniprésent : SLy(R) agit naturellement sur le plan hyperbolique; SL2(Q,) agit
naturellement sur un arbre). Les géométries de Hilbert constituent une autre grande famille de géométries
qui généralisent la géométrie hyperbolique : ce sont des déformations projectives de la géométrie hyper-
bolique.

Plutot que de prétendre dresser une liste de toutes les questions ouvertes que I’on peut formuler avec ces
ingrédients, ce texte ne contient qu’une sélection qui correspond plus a mes gotits et a mes compétences.
Ainsi, un paragraphe est consacré aux questions de rigidité/flexibilité. Un des grands objectifs de ma
carriére est en effet de comprendre ce qui est rigide (et pourquoi) et ce qui est flexible (et jusqu’a quel
point).

Ces trois aspects de mon activité de recherche (invariants globaux des espaces localement symétriques,
géométrie métrique et les questions de rigidité/flexibilité - les thématiques pouvant d’ailleurs s’entreméler)
sont détaillés a la section 3, avec des propositions de questions concretes sur lesquelles se pencher. Ces
questions sont classées selon deux niveaux de difficulté qui correspondent a des projets a court-terme ou a
des sujets plus ambitieux. Auparavant, a la section 2, on donne les prérequis mathématiques nécessaires,
un état de Part actuel (en insistant sur mes propres contributions) et on discute des enjeux de ce projet
de recherche. Deux niveaux de lecture sont proposés : le lecteur avec une culture mathématiques qui
n’est pas dirigée vers la géométrie est encouragé a sauter les parties du texte écrites en petit.

2. RESUME DES TRAVAUX

2.1. Quelques prérequis.
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2.1.1. Géométrie des espaces symétriques. Le lecteur est supposé familier avec les bases de la géométrie
différentielle, y compris I’aspect riemannien (voir par exemple | ]). Enrevanche, le contexte symétrique
est plus spécifique, bien que fréquent.

Définition 1 (Espace symétrique de type non-compact). un espace symétrique de type non-compact est
une variété riemannienne (]\;I,g) simplement connexe, de courbure négative ou nulle, sans facteur de de
Rham isométrique a R (cela signifie que l'on ne peut pas écrire la variété comme un produit riemannien
avec un facteur R) et telle qu’en chaque point p € M, il existe une isométrie o, telle que dyop = —id.

Cette définition signifie que la variété riemannienne (M ,g) a beaucoup d’isométries. En fait, on peut
méme montrer facilement que le groupe d’isométrie est si gros qu’il est transitif sur la variété puis que le
stabilisateur d’un point est un sous-groupe compact strict et maximal du groupe d’isométries. Inverse-
ment, si M ’écrit G /K comme ci-dessus, alors G préserve une métrique riemannienne sur M (le groupe
K étant compact, il préserve une métrique sur T[C]M , que l'on peut ensuite promener par l'action de G).

Le groupe G est semi-simple si et seulement si la courbure de M est négative ou nulle et M n’a pas de
facteur R. Ainsi de la définition géométrique, on déduit une caractérisation algébrique : (M ,g) est un
espace symétrique de type non-compact si et seulement si M = G /K et g est une métrique G-invariante a
gauche; ol G est un groupe de Lie semi-simple et K est un sous-groupe compact maximal. On peut alors
décrire indifféremment un espace symétrique par son espace homogeéne M ou son groupe semi-simple G.

Une solide référence est le livre de P. Eberlein | ].

Mentionnons encore quelques aspects de la géométrie des espaces symétriques. La définition ci-dessus
autorise la présence de zones plates (de courbure nulle) dans la variété et il existe un moyen de quantifier
I'importance de ces zones plates. On montre en effet que les espaces euclidiens maximaux plongés de
maniére isométriques dans M ont tous la méme dimension (le groupe est transitif sur ces plats). Cette
dimension des plats maximaux s’appelle le rang de I’espace symétrique.

Mais la dimension n’est pas le seul point commun a ces plats maximaux. Chacun d’entre eux est en effet
canoniquement muni du méme systéme de racines comme a la figure 1 qui se représente géométriquement
par un pavage des plats maximaux par des cones délimités par des hyperplans vectoriels. Nous reviendrons
sur ce type de structure combinatoire au paragraphe 2.1.4. Cette structure caractérise I’espace symétrique,
lorsque le rang est supérieur a 2, | ].

A L4
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v

FIGURE 1. Systemes de racines de H? x H? (a gauche) et de SL3(R)/SO3(R) (& droite)

Un espace localement symétrique M est une variété riemannienne localement isométrique a un espace
symétrique. Sila variété est compléte, on montre qu’elle s’obtient par le quotient de M par un sous-groupe
discret I' de G. Si M est compacte, on dit que le groupe I' est cocompact; si M est de volume fini, on dit
que I' est un réseau.

Pour ce qui est des notations, on désigne dans ce texte un espace symétrique par M, une variété
riemannienne simplement connexe quelconque par X, une variété localement symétrique par M et une
variété riemannienne par X.
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La discussion qui suit est plus précise mais plus technique. Elle vise & définir le bord a l’infini d’un espace symétrique et d’en
présenter la structure. Fixons une fois pour toutes un point p € M. Ce point et son involution o, associée détermine une décomposition
de Cartan

g=pt

de I'algebre de Lie g de G. L’algebre de Lie t s’identifie & l’algebre de Lie de K =Stabg(p) et p s’identifie & TpM. Soit a une sous-algebre
de Lie abélienne et maximale de p. Le rang de M est la dimension de a. Si A = exp(a), alors A - p est un plat maximal (en effet, la
courbure se calcule avec des crochets de Lie dans I’algebre de Lie).

Un vecteur v € T'M est dit régulier s'il est tangent & un unique plat. Sinon il est dit singulier. Une géodésique est elle-aussi dite
réguliere ou singuliere si I'un (donc tous) de ses vecteurs tangents est régulier ou singulier. Un point du bord de I’espace symétrique
£ € BouM (pour le bord d’une variété & courbure négative ou nulle, voir la discussion qui précede le théoréme 2; le bord est aussi
Pensemble des classes d’équivalences de géodésiques pour la relation d’”étre & distance finie”) hérite lui aussi de la notion de régularité
puisque c’est la limite d’une géodésique. Les vecteurs singuliers de a se répartissent sur des hyperplans vectoriels (qui correspondent
aussi aux hyperplans d’un systéme de racines). Une chambre de Weyl (ouverte) at de a est le choix d’une composante connexe de
vecteurs réguliers de a (qui correspond & un choix de racines positives). De méme, dans 1’espace symétrique, AT - p = exp(a™) - p est
une chambre de Weyl.

Une autre notion de bord de I'espace symétrique, plus adaptée au rang supérieur, est le bord de Furstenberg de M. Soit £ € 8oo M
un point régulier. le bord de Furstenberg s’identifie & 'orbite G§ de £ sous 'action de G. C’est aussi I’espace des chambres de Weyl a
infini de M (i.e la trace dans 800 M des chambres de Weyl de M ) puisque le groupe G agit transitivement sur ces chambres de Weyl
mais ne connecte jamais deux points de la méme chambre. On note P =Stabg () de sorte que le bord de Furstenberg s’identifie & G/P
et on dit que P est un sous-groupe parabolique minimal (il est minimal car £ est régulier). Les points singuliers ont naturellement un
7 type” selon leur position dans le chambre de Weyl fermée; leur orbite donne d’autres notions de bord de M qui s’identifie & des espaces
homogenes G/Pg ou © est le type de point singulier. Le bord de Furstenberg se note Op M.

2.1.2. Quelques invariants géométriques et topologiques. Les invariants géométriques, différentiables et
topologiques globaux définis dans cette section sont I’entropie volumique et topologique, ’exposant cri-
tique d’un groupe discret, la systole, le volume minimal et la cohomologie (bornée). Le programme de
recherche consacré a ces invariants peut se résumer de la maniere suivante : quelles sont les informations
géométriques contenus dans ces invariants 7 Gardant cet état d’esprit, on exclut le spectre des variétés
riemanniennes dont ’étude est essentiellement analytique et dont on sait qu’il n’a que peu de controle sur
la géométrie | , chapitre 12].

Soit (X, g) une variété compacte de revétement universel riemannien (X, g). On fixe un point = € M.

On montre que la quantité suivante existe et qu’elle est indépendante de x :
. log Vol B(z, R)
Mg) = fim R ‘
On appelle h(g) 'entropie volumique de la métrique g.

L’entropie est donc une quantité qui mesure le taux de croissance exponentielle du volume des boules
riemanniennes. Elle ne dépend que de la géométrie du revétement universel (pourvu qu’il admette un
quotient compact). Noter que dans I’espace euclidien, le volume des boules a une croissance polynomiale
avec le rayon de sorte que I’entropie est nulle. En revanche dans I’espace hyperbolique, on trouve facilement
h(H") = n — 1. En courbure strictement négative, l’entropie est toujours strictement positive (par
comparaison a l’entropie algébrique du groupe | ). L’entropie algébrique du groupe muni d’un
systeme fini de générateurs est l’entropie métrique d’'un graphe de Cayley, on montre ensuite que le
revétement universel d’'une variété compacte est quasi-isométrique au graphe de Cayley. L’annulation
ou la positivité de I'entropie est préservée par quasi-isométries. Ainsi donc, on constate que le contexte
riemannien n’est pas le plus général avec lequel travailler. En effet, dans tout espace métrique mesuré, on
peut calculer des volumes de boules (2.1.3). Il n’y a en revanche aucune garantie que la limite existe et
c’est en général un enjeu important de comprendre quels sont les espaces métriques mesurés qui admettent
une entropie volumique (voir & ce propos la question 11 bis du programme de recherche).

Un exemple : L’entropie des espaces symétriques se calcule facilement avec les données introduites au paragraphe 2.1.1. Soit en
effet, b le ”barycentre” de la chambre de Weyl, c’est-a-dire la somme des vecteurs duaux aux racines positives qui déterminent at.

Alors, on peut montrer ([ 1) que h(M) = ||b]|. Pour cela, il s’agit de voir que, pour tout réseau I' de G, la direction de croissance
maximale de T" est b puis d’appliquer le théoréeme 2.

La terminologie entropie suggere aussi une interprétation dynamique ou comme la mesure d’une certaine
indétermination. Ces notions-1a d’entropies existent et ont bien des similitudes avec la notre | ]. Nous
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n’utiliserons pas la version probabiliste dans ce texte mais la version dynamique apparaitra au paragraphe
3.3.4.

La notion suivante vise a définir une mesure du chaos de la dynamique du flot géodésique. Soit donc
(X, g) une variété riemannienne compacte pour laquelle on considére son flot géodésique ®¢. Par définition
®! est I'application du tangent unitaire 7' X de X dans lui-méme qui, & un vecteur v associe 7/, (t) o 7,
est la géodésique de vecteur initial v.

On considere la distance dp sur T'X définie par

dr(u,v) = Sup d(mx (9 (u)), mx (@ (v))).
Ici d est la distance riemannienne sur X et mx la projection canonique de 7' X sur X. Ainsi, les boules
B(u,¢) pour la distance dr sont constituées des vecteurs v dont Iorbite reste & distance inférieure & € de
celle de u jusqu’au temps 7.

Dans cette situation on dit qu'un sous-ensemble S de T'X est (e, T)-séparant si, pour tout u,v € S,
dp(u,v) > € et on note Sep(e,T) la taille d'un ensemble (g, T)-séparant maximal. Ce nombre mesure le
nombre d’orbites qui peuvent étre reconnues jusqu’au temps 1 avec une précision €. Enfin, on définit
I’entropie topologique du flot géodésique par

htop(X) = lim lim sup M.
e—=0 7 450 T
L’exposant critique est une variante de ’entropie volumique et dont les points communs permettent
parfois de lui faire jouer un role analogue (voir & ce sujet la question 8 du programme de recherche).
C’est un nombre réel associé a un sous-groupe discret d’isométries d’une variété riemannienne simplement
connexe. Bien que sa définition puisse avoir du sens dans le contexte général suivant, son utilisation n’est
pertinente qu’en courbure sectionnelle K pincée, c’est-a-dire qu’il existe deux constantes a et b positives
telles que
—a < K <-b.
[ | ou pour des groupes de covolume fini (voir la question 8 de la section 3) On forme dans un premier
temps la série de Poincaré
(s,z,T) Ze_Sd(”"’W)

~el
En tant que série de Dirichlet, cet objet a un exposant critique indépendant de x, donné par

o(T) = lim (8# Y ET] dz32) < n}

n—00 n

Soit maintenant X une variété riemannienne simplement connexe de courbure sectionnelle K négative
ou nulle Un phénomeéne de courbure négative assure que X est différentiable & R™, via I’exponentielle
riemannienne en un point arbitraire. On peut donc canoniquement compactifier X par I’ajout d’une
sphere & linfini que I'on appelle le bord de X et que l'on note dooX. Puisque le groupe I" est discret, ses
orbites I' - x pour x € X ne peuvent s’accumuler qu’au bord O X. On note A(T) =T - 2\I' - z les points
d’accumulations d’une orbite. Le bord 8., X étant canoniquement muni d’une métrique, on peut calculer
la dimension de Hausdorff de A(T"). C’est un invariant que ’on note 6(I).

Théoréme 2 (Comparaisons).
(1) Pour une variété compacte X, on a toujours h < hiop avec égalité si (mais pas seulement si) X
a une courbure partout négative.
(2) Pour toute variété riemannienne (X, g) et tout groupe discret I', on a toujours h(g) < n(I"). Il y
a €galité si I' est cocompact.
(3) En courbure négative pincée, et pour des groupes convezxe-cocompacts 2

() = 6(I").

(4) En courbure négative ou nulle, si le groupe I' est cocompact, alors A(T') = S*1.

2Une fagon de dire que la variété a la topologie d’une variété compacte mais sans étre nécessairement compacte, voir plus
bas le paragraphe 2.2.4
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La deuxiéme et la derniere assertions sont élémentaires, la premiere est un résultat de | ], la
seconde est un théoreme de | ]

Que l'on retire la condition de courbure négative, méme dans le cas des espaces symétriques, et la
situation se complique énormément. Par exemple, bien que ’on puisse définir un exposant critique pour
un groupe discret d’isométries d’un espace symétrique de rang supérieur, il est préférable de modifier la
construction pour tenir compte de la nature du point base [ | : le groupe d’isométrie n’étant pas
transitif sur les couples de points & méme distance, la distance d(z,~vx) n’est pas la seule information
portée par le couple (x,vz). Le groupe n’étant pas non plus transitif sur le bord, 'ensemble limite est
une réunion d’orbites, chacune ayant un role a jouer (voir larticle récent [ D).

L’exposant critique d’un groupe discret est le premier ingrédient de la théorie de Patterson-Sullivan. Dans différents contextes, par
exemple pour des groupes discrets d’isométries d’un espace symétrique (] ] et [ ]) ou pour des variétés & courbure négative
( ], voir aussi [Qui]), on construit une famille de mesures (vz) chacune supportée sur A(T") et vérifiant les deux conditions
suivantes.

zeX>

(1) La famille de mesures est I'-équivariantes, c’est-a-dire solution de I’équation, pour tout v € T,
YxVx = Vrzx

(2) Les mesures (v;) sont toutes & densité les unes par rapport aux autres avec

OV

Z2(6) = e~ 1(Ozy)
Ovy

oub: BOOX x X x X est la fonction de Busemann définie par
b0, 2,y) = lim dg(y,79(t)) — ¢

si yg est 'unique géodésique telle que 9 (0) = = et y9(o0) = 6.
Il y a unicité d’une telle famille de mesures si I" n’est pas élémentaire. On dit que ce sont les mesures de Patterson-Sullivan de I". Dans
bien des cas, ces mesures permettent d’étudier les propriétés ergodiques du flot géodésique sur I'\ X, [ ]. Mais, dans esprit de
ce texte, elles constituent un plongement équivariant de X dans ’espace des mesures sur A(I") et la géométrie de I'\X s’étudie par
Pintermédiaire de techniques de géométrie extrinseque vis-a-vis de ce plongement (voir page 9)

Sur une variété riemannienne (M, g), la systole est par définition la longueur d’une des plus petites
courbes non contractiles, comme illustré sur la figure 2.

l\\\ O//m\\\J//
\
"

FIGURE 2. La systole d’une surface de genre 2

On la note sys. Par extension, on désigne aussi parfois par la systole, la ou les courbe(s) qui réalise(nt)
cette longueur minimale. Un résultat profond dont ’esprit est d’établir une inégalité ”isopérimétrique”
de M. Gromov ([ ]) prétend que la systole est majorée par le volume : pour une variété fermée
essentielle 3 M, il existe une constante ¢, qui ne dépend que de la dimension n de la variété telle que,
pour toute métrique g sur M,

sys"(g) < ¢, Vol(g)

3Une condition topologique tres faible; c’est par exemple le cas des variétés asphériques, par exemple celles qui portent
une métrique de courbure négative ou nulle
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Si la systole est grande en effet, pour que la variété (compacte) se referme autour, cela nécessite un
gros volume. Dans un contexte géométrique suffisamment vague, on ne peut pas en général donner des
estimées plus précises sur le comportement de la systole. Une direction de recherche actuelle consiste a
tenter d’affiner la constante c,, lorsque 'on fait des hypotheses topologiques additionnelles sur la variété.
L’invariant topologique (ce n’est pas évident, a priori, ce n’est qu’un invariant de la structure différentiable,

voir [ ]) associé est en fait le volume systolique o (M) :
(M
o (M) = inf YA 9)
9 sys(g)"

ou l'infimum est pris sur I’ensemble des métriques riemanniennes sur M. Puisque la quantité a minimiser
est homogene, on peut, de maniere équivalente, considérer la plus grande systole parmi les métriques de
volume 1 sur M.

Un dernier invariant, introduit dans | | est cette fois-ci de nature différentiable (] ). Soit
donc X une variété différentiable. On appelle en effet Volume minimal la quantité

MinVol(M) = inf {Vol(M, g) | g est une métrique sur M satisfaisant |K(g)| < 1}

Dans son article fondateur | ], Pauteur relie volume et cohomologie bornée d’une variété rieman-
nienne compacte X. Un panorama complet de la théorie dépasse le cadre de ce texte et on renvoie au
livre | | pour découvrir le sujet.

Rappelons seulement que la cohomologie bornée est la cohomologie du complexe des fonctions bornées I' = 71 (M )-invariantes sur
M

)

Cy(M™ R,

avec une différentielle ” combinatoire” donnée par

n+1
Of @0y s @nt1) = S (1) F(@0y -+ sy s nt1)-
i=0
Elle est en général plus riche que la cohomologie ordinaire car il arrive souvent que Jf soit bornée sans que f le soit, fournissant ainsi une
classe de cohomologie non nulle en cohomologie bornée mais triviale en cohomologie ordinaire, | ]. Par exemple, si S est une surface
de caractéristique d’Euler négative, HZ(S) n’est pas de dimension finie, [ ] (car 71(S) admet beaucoup de quasi-morphismes). La

philosophe générale prétend donc que les groupes de cohomologie bornée contiennent plus d’informations topologique sur X que la
cohomologie ordinaire. C’est en tout cas un enjeu important de comprendre ces groupes (peu de choses sont connues & leur propos)

2.1.3. Géométrie de Hilbert. Le modele de Klein fait apparaitre la géométrie hyperbolique comme un
ellipsoide de ’espace projectif, métrisé par la formule

A(p.q) = ylog (lap: q:1]),

ou [a:p: q:b] désigne le birapport des quatre points.

Déformons maintenant I’ellipsoide en un convexe quelconque €2 de I'espace projectif. La méme formule
définit alors une distance a I'intérieur du convexe. On dit alors que 'on a déformé la structure projective
sous-jacente a la géométrie hyperbolique. L’espace métrique obtenu (2, dq) s’appelle une géométrie de
Hilbert (figure 3).

FiGURE 3. Une géométrie de Hilbert

En se référant a | | pour une approche détaillée, voici quelques propriétés utiles des géométries de
Hilbert

(1) Les espaces (€, dg) sont des espaces métriques complets (le bord du convexe est ”a l'infini”).
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(2) La métrique dgo n’est riemannienne que dans le cas ou € est un ellipsoide. En revanche, dg est
toujours finslérienne, engendré par la famille de normes

loll, =5 (- +
v, == —+—
P o\t 1)
ou t1 et to sont les deux réels positifs tels que p + t;v € 99.

p+tv

FIGURE 4. La structure finslérienne

(3) Les droites euclidiennes sont des géodésiques de (£2,dq) et ce sont mémes les seules si € est
strictement convexe.
(4) Les transformations projectives qui laissent €2 invariant sont des isométries de dg,.

Pour définir une entropie des géométrie de Hilbert, il faudrait disposer d’une mesure de volume. Or
il n’existe pas de choix canonique d’une telle mesure (comme dans le cas riemannien) mais une famille
de mesures possibles, voir [ |. Cependant, ces choix de volumes sont sans influence sur 'entropie,
celle-ci n’ayant pour vocation qu’a capturer des phénomeénes géométriques de grande échelle. Un choix
possible est la mesure de Busemann : on considere la fonction o sur {2 donnée par

ol wy, est le volume de la boule unité euclidienne de R", £ est la mesure de Lebesgue et B, est la boule
unité Finslérienne centrée en x. Enfin la mesure de Busemann g est une mesure dans la classe de la
mesure de Lebesgue dont la densité est o, i.e:

H(A) = /A o(2)dL ()

pour tout borélien A.

La quantité w ne converge cependant pas toujours (voir question 11 bis). On note les limites

inférieures et supérieures par h et h respectivement. La notation h seule signifie implicitement que la
limite existe.

2.1.4. Géométrie des immeubles. La référence principale pour appréhender la structure d’immeuble est
[ ] mais le point de vue employé ici suit I’approche géométrique de | ]. Commengons par une
discussion heuristique. La terminologie trés imagée fournit une bonne intuition : un immeuble est une
réunion d’appartements, chaque appartement est lui-méme découpé en chambres qui sont séparées par
des murs. Un appartement est par définition un espace euclidien muni d’un pavage. Noter I’analogie avec
les plats des espaces symétriques (analogie renforcée par la terminologie anglaise). Les chambres sont les
composantes connexes de ce pavage, les murs sont les hyperplans (affines dans ce cas) de pavage. Puis la
structure globale est obtenue en ”branchant” ces appartements le long des murs (chaque mur étant donc
commun & plusieurs appartements). Lorsque 'espace euclidien est de dimension 1, un immeuble est un
arbre.

Plus précisément, soit G un groupe fini engendré par des réflexions vectorielles de R™, H un sous-groupe du groupe des translations
de R™ qui engendre R™ sur R, puis W = G x H le groupe affine dont la partie vectorielle est G et la partie de translation est H. Les
hyperplans affines de réflexions de W sont les murs évoqués plus haut. Un espace métrique X est un immeuble affine §’il existe un atlas
de plongements isométriques ¢ : R™ — X tel que

(1) Chaque changement de cartes Lp;l o 1 est la restriction d’un élément de W.

(2) Deux point quelconque sont dans un méme appartement (c’est-a-dire un plongement de R™).
(3) Chaque mur est contenu dans (au moins) trois appartements.
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Lorsque le groupe H est discret, 'immeuble est muni d’une structure de complexe polysimplicial.

Cette structure apparait naturellement pour jouer le role de I'espace symétrique associé a un groupe de
Lie qui est un groupe algébrique sur un corps valué non archimédien. L’immeuble est alors un immeuble
de Bruhat-Tits. Par exemple SL2(Q),) agit sur un arbre, [ ]. On rencontre aussi des immeubles
lorsque 'on fait ”dégénérer” un espace symétrique (voir page 13).

2.2. Etat de art. Cette section n’a pas vocation a constituer une bibliographie exhaustive des sujets
abordés mais une sélection de travaux qui ouvrent la voie au programme de recherche. C’est 'occasion
de donner quelques détails sur mes contributions.

2.2.1. Sur le comportement des invariants. Le premier résultat de cette section constitue le théoreme
principal de l'influent article | ].

Théoréme 3 (| ]). Soit (M, go) un espace localement symétrique compact de rang 1 et de dimension
n > 3. La donnée de toute autre métrique g sur M conduit a l'inégalité

h(g0)" Vol(M, go) < h(g)" Vol(M, g)
L’égalité n’a lieu que lorsque g est isométrique a go.

Ainsi le volume et I'entropie sont des invariants complets de la géométrie symétrique de rang 1. Les
applications de ce résultats sont nombreuses. Mentionnons par exemple un théoreme de rigidité dynamique
sous I'hypothése de conjugaison des flots, une preuve explicite du théoreme de rigidité de Mostow | ]
et un calcul précis du volume minimal dans le cas hyperbolique réel [ , chapitre 9], via I'inégalité
de Gromov-Bishop qui, selon une hypothése de courbure, donne une estimée du volume des boules.

Ce théoreme est a la base de mes travaux de these. Il a été étendu dans deux autres cas, un énoncé
général qui impliquerait un espace localement symétrique compact quelconque, restant encore a démontrer.
On a en effet

Théoréme 4 (] ). Soit (M, go) un espace localement symétrique compact de dimension n dont le
revétement universel est le produit d’espaces symétriques de rangs 1 et de dimensions supérieures a 3.
Alors, pour toute autre métriqgue g sur M, on a

h(g0)" Vol(M, go) < h(g)" Vol(M, g)
L’égalité n’a lieu que lorsque g est isométrique a go.
Puis

Théoréme 5 (| ). Soit (M, go) un espace symétrique compact dont le revétement universel est un
produit de plans hyperboliques (HQ)n. Pour toute autre métrique g sur M,

h(g0)*" Vol(M, go) < h(g)*" Vol(M, g)

Bien qu’optimale, I'inégalité ne vient pas avec son cas d’égalité. Noter qu’en raison de l’absence
de résultat de rigidité de Mostow dans H?, le cas d’égalité n’est conjecturé que pour certains espaces
(irréductibles).

Les preuves de ces trois théorémes ont un tronc commun qu’il s’agit maintenant de présenter. Cela expliquera notre approche pour
attaquer certaines questions encore ouvertes. On procede en deux grandes étapes, I'une de plongement, 'autre de calibration. On
rappelle qu’afin de distinguer les métriques symétriques des métriques riemanniennes quelconques, on utilise les notations de la page 3.

(1) A chaque métrique g, on associe un plongement I'-équivariant ®g : X > L2 (8F]\7[) qui d’ailleurs est a valeur dans la sphere
unité S™ de L2 (BFM) Noter que le désagrément & travailler en dimension infinie dans L2(8FM) est largement compensé par
le fait que L2(8FM) porte en un seul espace des informations géométriques sur toutes les métriques riemanniennes déposées
sur M. Ce plongement @, est construit avec les mesures de Patterson-Sullivan (voir page 6) de I' = 71 (X)) lorsque g est a
courbure négative ou par une variante si ce n’est pas le cas. Noter que le choix du bord est décisif en rang supérieur.

(2) Il s’agit ensuite de montrer que le plongement le plus canonique ®g4,, celui associé & la métrique symétrique go, est minimal et
minimisant ou autrement dit que ®g4, (M ) est une sous-variété minimale et minimisante (parmi toutes les sous-variété du type
dy (X )). L’équivariance des plongements rameéne naturellement le probléme au cas de variétés compactes. En particulier les
sous-variétés ®4(X) ont un "volume” : celui de tout domaine fondamental pour 'action de I' sur X calculé avec la métrique
rappelée par &4 de la métrique canonique de L2 (6F]\7[)
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Pour comprendre que c’est ce probleme de sous-variété minimale qu’il s’agit de résoudre, il faut relier le volume de la

sous-variété ®4(X) a I’entropie et au volume usuel de la métrique g. On trouve
Vol @4(X) < h(g)" Vol(g),

I'inégalité étant une égalité lorsque g est la métrique go.

La technique de calibration est une idée classique de la théorie des sous-variétés minimales (voir | 1), légeérement
modifiée ici pour s’adapter & la dimension infinie. Elle consiste & exploiter la donnée d’une n-forme différentiable w sur
L2(8p M) qui est

(i) T-invariante
(ii) fermée
(iii) et qui prend des valeurs maximales sur ®g,(M).
La définition méme du volume, ainsi qu’un argument a la Stokes appliqué a la forme fermée w nous donne alors

Vol(@,) ;/M <I>;(w):/M B () = Vol(®y),

ce qui, combiné avec les calculs de Vol &, donne I'inégalité dans les théorémes.

Comme on le voit, le coeur de 'argument consiste a trouver une forme calibrante w. A ce stade, les preuves envisagées dans | ] et
[ ] bifurquent. Dans le premier article, la forme calibrante est construite & I’aide de I’application de barycentre des mesures, qui
jouit de fantastiques propriétés de régularisations globales (analysées dans [ ]). Dans le second article, j’ai utilisé une stratégie
pour fabriquer beaucoup de formes différentielles sur L2(0r M) et cherché & comprendre lesquelles étaient susceptibles de fournir des
calibrations. Cette stratégie s’implémente de la fagon suivante. On munit Op M = G/Stabg(§) de 'unique mesure K-invariante df sur
G - £. Puis, soit
~\n+1
c: (8FM ) — R

une fonction antisymétrique et bornée. Avec celle-ci on construit une forme différentielle w(c) sur S°° par
w(@)e(f1,- s fn) :/ i (00, ,0)9% (00)9(61) f1(01) - - - £(0n) fr (Bn)db0 - - - A0,
(BFM)n+1
ou ¢ est une fonction de S et les f; sont tangentes en ¢ & S°°, c’est-a-dire,
[ _e®ne =o.
op M

On démontre ensuite les deux faits suivants

(i) La forme w(c) est I'-invariante si ¢ est I'-invariante (pour 'action diagonale de T").
(ii) La forme w(c) est fermée si ¢ est fermée au sens de la cohomologie, c’est-a-dire si

n+1 )
dc=>Y (—=1)'c(fo,-,0i,++ ,0n) =0

i=1
Ainsi donc, en résumé, pour construire une forme différentielle qui peut étre calibrante, il faut que ¢ définisse une classe de cohomologie
bornée de I" (ou, de maniére équivalente de M). Ce groupe de cohomologie bornée est immense; par exemple, dans le cas des surfaces,
il n’est pas de dimension finie. Mais, si 'on veut que l'argument s’adapte a tous les réseaux I' simultanément, il est commode de choisir

. . . . . . . 3 2 n .

une application ¢ qui est G-invariante et non pas seulement I'-invariante. Dans le cas des réseaux de (H ) , le groupe de cohomologie

bornée HZ™((PSL2(R))™) est de dimension 1, engendré par le cup product de classes d’Euler (voir [ 1). Pour le cas des groupes de
Lie semi-simple en général, le méme résultat est conjecturé.
Quoi qu’il en soit, pour terminer la preuve du théoréme principal de | |, il suffit de vérifier qu’un cocycle bien choisi, générateur

de HZ"((PSL2(R))™) convient. Cela passe par une analyse explicite et assez fine de la transformée de Fourier du cocycle.

2.2.2. Courbure de Ricci et entropie volumique. Dans une optique récente, I’entropie prétend jouer le role
de substitut a la courbure de Ricci. Cette comparaison entropie/courbure de Ricci est rendue possible
par I'inégalité de Gromov-Bishop qui traduit une borne inférieure sur la courbure en une borne supérieure
sur l'entropie [ , théoréme 3.101]. Bien sur, I'entropie est un invariant beaucoup plus faible. Un
programme de recherche peut donc s’organiser de la maniere suivante.

(1) Trouver un énoncé de la littérature riemannienne qui fait intervenir une hypothése sur la courbure
de Ricci.
(2) Que reste-t-il de cet énoncé si ’'on remplace courbure de Ricci par entropie ?

L’enjeu de ce programme de recherche consiste a englober une classe beaucoup plus large d’espaces
métriques, 'entropie étant définie sur chaque espace métrique mesuré, ce qui est beaucoup plus souple que
la notion de variété riemannienne. C’est dans cet esprit que deux travaux récents ont vu le jour, [ ]
et | ]. Le deuxiéme article est le fruit d’une collaboration avec Florent Balacheff (Barcelone). Le
théoreme principal est une inégalité géométrique qui permet d’estimer ’entropie en fonction du bas du
spectre des longueurs. Sa valeur réside dans son application en un ”lemme du collier” généralisé et
rentre dans le cadre précédent. Le lemme du collier est un résultat classique de la théorie des surfaces
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hyperboliques. Il affirme que si « et 8 sont deux courbes qui s’intersectent sur une surface hyperbolique
fermée, alors (on note I; la longueur de « et Iy celle de f3),

l l
sinh 51 sinh 52 > 1.

Ainsi, plus la longueur de « est petite, plus la largeur du ”collier” qui I'’entoure est grande. Nous obtenons
alors en particulier le résultat suivant.

Théoréme 6 (| ). Soit M une variété riemannienne fermée d’entropie h et soit c; et ca deux lacets
basés en un point x € M qui engendrent un groupe libre dans w1 (M, z). Alors

fe) > T log ( qu)) +o(1)

pour £(cy) proche de 0.

C’est une large généralisation du lemme du collier puisque I’énoncé concerne n’importe quelle variété
riemanienne (dont le groupe fondamental contient un groupe libre) et non pas seulement des surfaces
hyperboliques (on remplace ainsi une hypothése de courbure par une hypotheése sur I’entropie). L’estimée
sur la taille du collier est du méme ordre que dans le cas hyperbolique (pour lequel h = 1).

2.2.3. Géométries de Hilbert. A propos de I'entropie des géométries de Hilbert, le résultat le plus profond
est sans doute dans larticle [ -

Théoréme 7 (| 1). Pour tout convere compact Q de R™, h(Q) < n — 1.

La limite est atteinte dans le cas hyperbolique. Mais, contrairement aux espaces symétriques, I’entropie
ne joue aucun role de rigidité. En fait, des que le bord du convexe €2 est suffisamment régulier, ’entropie
est maximale.

Théoréme 8 (| 1). Supposons que OS) soit paramétrisé par une fonction ¢ de classe C1t. Alors
h(2) =n—1.
D’autres situations ont aussi été étudiées, notamment le cas des convexes divisibles [ ]. Le travail

présenté ensuite est le fruit d’une réflexion assez complete sur la relation entre la régularité du bord du
convexe et la valeur de I’entropie. C’est une collaboration avec J. Cristina a Lausanne. L’idée est d’obtenir
un résultat de nature suivante. Supposons que ’on se donne une famille d’espace de Banach B, et que le
bord d’un convexe ) soit paramétrisé par une fonction ¢ € B,. Peut-on exprimer I’entropie en fonction
de a 7 Nous obtenons deux résultats dans cette direction. Il serait tentant de penser que 1’on peut tester
le cas des régularités C1®. Or rien n’empéche une fonction C1'® d’étre plus réguliere et d’étre du coup
redevable des hypotheses du théoreme précédent. Il faut donc considérer une classe d’espaces de Banach
qui exprime qu’une fonction est de classe C1'* mais pas plus réguliere. C’est le sens de I'hypotheése de
a-Ahlfors régularité dans 1’énoncé suivant.

Théoréme 9 (| ).

(1) Soit Q un convexe de R™ dont le bord est paramétrisé par une fonction ¢ dans l’espace de Sobolev
W2P pour p >n — 1. Alors

h(Q) =n—1.

(2) En dimension 2, supposons que la paramétrisation de 2 soit une fonction a-Ahlfors réguliére.
Alors 5
Q
h(2) = .
a+1
La premiére partie étend le théoreme de | ] car Lt = W2,

(1) Le premier résultat s’obtient en suivant la démarche de | ]. On constate que la densité de Busemann converge, lorsque le

parametre  approche un point & sur le bord, vers la courbure de 89 en €. En régularité C! la courbure du bord existe presque
partout. En régularité plus basse, la courbure n’existe que sous forme d’une mesure sur S*~! et non plus ponctuellement et
c’est donc une convergence en mesure dont il est question. Voulant calculer la limite sur des cercles de plus en plus grands de
la moyenne de la fonction de Busemann sur ces cercles, la théorie géométrique de la mesure fournit les outils adéquats.
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(2) Le deuxieéme résultat est plus difficile et s’obtient en deux étapes. On calcule dans un premier temps I’entropie de certains
convexes de référence. Ces convexes sont obtenus en enroulant (la primitive de) la fonction ”escalier du diable” de Lebesgue.
On cherche ensuite & comparer la situation générale & cette situation de référence. Pour ce faire on utilise (et affine) un
théoréme de [ | de comparaison d’ensembles de Cantor réguliers. Noter que si ¢ est une fonction a-Ahlfors réguliere, sa
dérivée seconde au sens faible est une mesure supportée sur un ensemble de Cantor de dimension de Hausdorff a.

2.2.4. Questions de rigidité/flexibilité. C’est un theme transverse de mon activité de recherche. On a déja
rencontré dans ce texte le theme de la rigidité parmi les résultats de rigidité entropique du paragraphe
2.2.1 ou de flexibilité des représentations dans le théoreme 11. Un objet mathématique est dit rigide s’il
dépend de moins de parametres que ce que sa définition naive suggere. Par exemple, le célebre théoreme
de Mostow affirme que si deux variétés hyperboliques compactes de mémes dimensions supérieures a 3
sont homéomorphes, elles sont en fait isométriques. C’est un résultat de rigidité au sens ou la structure
géométrique ne dépend que de la topologie. A I'inverse, un objet est dit flexible s’il apparait inchangé
dans une famille de situations. Par exemple, les variétés hyperboliques compactes de dimension 2 sont
flexibles car il en existe qui sont homéomorphes mais non isométriques (en fait tout un espace, ’espace
de Teichmiiller de la surface topologique).

En plus de vouloir classifier les objets flexibles et les objets rigides, un programme de recherche sur ces
questions visera a établir deux types de résultats.

(1) Si un objet est rigide, quels sont les parametres qui le caractérisent.
(2) Si un objet est flexible, quelle est la taille et la forme de son espace de déformations.

Groupes de Morse.

Le cceur convexe d’une variété hyperbolique M = I'\H" est le plus petit ensemble convexe qui porte
toute la topologie de la variété (i.e sur lequel M se rétracte). Ce cceur convexe existe bien : c’est aussi
le quotient par I" de I’enveloppe convexe dans H" de A(I'). Une variété hyperbolique est dite convexe-
cocompacte si son ceoeur convexe est compact. Le coeur convexe est encore l’ensemble récurrent de la
dynamique du flot géodésique; c’est donc le lieu ou la dynamique a de bonnes propriétés ergodiques.
Dire qu’une variété est convexe-cocompacte revient a réclamer de bonnes propriétés topologiques (avoir
la topologie d’une variété compacte) ou dynamiques (apreés avoir coupé certains morceaux de la variété,
la dynamique vit sur un ensemble compact). Par extension on dit que le groupe I' = 71 (M) lui-méme
est convexe-cocompact si M D’est. Noter que les cusps des variétés hyperboliques sont convexes et non
compacts et ils sont donc exclus de la théorie. Lorsqu’il s’agit de généraliser cette définition & d’autres
géométries locales, par exemple lorsque le revétement universel est un espace symétrique quelconque, on
rencontre le probleme suivant

Théoréme 10 ([ | et [ ). Soit G un groupe de Lie de rang supérieur a 2 et I' un groupe discret,
rréductible et Zariski-dense de G. Si I' est convexe-cocompact, alors I' est cocompact.

Les hypotheses servent a éviter les ”fausses situations de rang 1”. On pourrait en effet considérer le
produit de deux variétés hyperboliques convexe-cocompactes qui mettraient le théoreme en défaut; le fait
que le groupe soit supposé irréductible nous prévient d’une telle situation. On pourrait encore considérer
le cas d'un groupe de Lie de rang 2 (O(2,n)) qui contient un groupe de Lie de rang 1 (O(1,n)) et d’'un
groupe qui s’injecte dans le sous-groupe de rang 1; c’est cette fois I’hypothese de Zariski-densité qui
interdit cette situation.

Ainsi donc, en rang supérieur, la notion de convexe-cocompacité naive ne produit pas d’autres exemples

que les réseaux cocompacts, par ailleurs bien étudiés ([ ]). Basé sur certaines caractérisations de
la convexe-cocompacité en rang 1 de | |, larticle [ ] propose une définition de la convexe-
cocompacité adaptée au rang supérieur. Les auteurs proposent en effet une définition de ”groupes de
Morse”, en référence a un certain lemme de Morse prouvé dans | ], qui coincide en rang 1 avec la

définition de la convexe-cocompacité.

Pour ne pas alourdir, I’exposition, il est sans doute préférable de ne retenir que deux propriétés fondamentales des groupes de Morse
(c’est en fait presque une caractérisation).

(1) Un groupe de Morse est Gromov-hyperbolique.
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(2) Les orbites d’un groupe de Morse I" ne sont pas distordues, c’est-a-dire que les applications orbitales
I'—=T-z

sont des quasi-isométries pour toute métrique de mots sur le groupe.

En rang 1, les groupes fondamentaux de variétés hyperboliques compactes sont Gromov-hyperboliques tandis que les cusps créent de la
distorsion.

Les groupes de Morse sont donc des groupes qui possédent une action ”de type rang 1”7 (dans la
terminologie de [ ]) sur un espace de rang supérieur. Et en tant que tels, il m’a semblé intéressant
d’étudier leurs propriétés de déformations. En effet, les groupes de rang 1 peuvent se comporter de bien
des facons différentes dans leurs possibilités de déformations : les réseaux sont flexibles en dimension 2
(espace de Teichmiiller), rigides en dimension supérieures a 3 (théoreme de Mostow) et il existe aussi
des phénomenes intermédiaires de semi-rigidité [ ]. Etudier les déformations des groupes de Morse
permet donc de les catégoriser.

Le théoreme suivant donne une contrainte algébrique forte sur la possibilité de ”partir a I'infini” dans
I’espace des déformations.

Théoréme 11 (| ). Soit (p) une suite de représentations uniformément de Morse d’un groupe T
dans un espace symétriqgue M. On suppose que la suite p, dégénére de fagon contrélée. Alors le groupe
I' se scinde en un produit libre de groupes de surfaces fermées et d’un groupe libre.

Plus simplement cet énoncé dit que pour que I’espace des déformations des variétés convexe-cocompactes
soit gros, il faut nécessairement s’appuyer sur un groupe ”“de dimension 2”. C’est bien str un écho au
manque de rigidité de Mostow pour les groupes de surfaces fermées.

L’hypothese de Morse uniforme fait référence aux constantes de quasi-isométries mais s’applique a des
métriques décrites au cours de la preuve suivante. L’hypothese de dégénérescence controlée permet de
supposer que l'on peut choisir un systeme de générateur du groupe I' dont chaque longueur de courbe
croit a la méme vitesse. Noter que ces hypotheéses ne sont pas outrageusement fortes puisque de telles
suites de représentations existent dans le cas d’un groupe libre pour les groupes de Schottky et dans le
cas des groupes de surfaces pour les représentations quasi-fuchsiennes | .

La preuve se propose de mettre en place les deux idées directrices suivantes.

Fait 1 : Partir a l'infini dans ’espace des représentations revient & considérer non plus une action du groupe I' sur un espace
symétrique mais sur un immeuble affine. L’immeuble affine est le cone asymptotique de ’espace symétrique et s’obtient en ”dézoomant”
Pespace (c’est-a-dire en contractant la distance riemannienne, en ”regardant 1’espace de plus loin”). Cette construction est une référence
directe aux travaux [ et | ].

Fait 2 : Lorsque l'on veut faire de la théorie géométrique des groupes, c’est-a-dire comprendre la structure d’un groupe par
I'intermédiaire de ses actions, il est beaucoup plus efficace de disposer d’une action sur un immeuble que d’une action sur un espace
symétrique. Une illustration de cette philosophie est le théoréme de Rips | ] qui classifie toutes les actions libres de groupes sur
des arbres.

La partie technique de la preuve consiste & montrer que ’on récupére une action de Morse sur I'immeuble & 'infini, que 'on peut
plonger un arbre dans cet immeuble (obtenu comme le cdne asymptotique du groupe lui-méme) puis chercher & appliquer le théoréeme
de Rips.

Espaces de Teichmiiller universel et géométrie Anti-de Sitter.

Considérons un groupe de surface I' = 71 (2,). La théorie de Teichmiiller classique étudie la géométrie
de espace des représentations (fideles et d’images discretes) de I' dans le groupe de Lie POg(2,1) qui
est le groupe des isométries directes du plan hyperbolique (précisément on identifie dans ’espace de
Teichmiiller deux représentations qui sont conjuguées par un élément de POg(2,1)). Par ailleurs, il existe
une représentation canonique de POg(2,1) dans POg(2,2), qui est le groupes des isométries directes d’'une
variété Lorentzienne, appelé I'espace Anti de Sitter (AdS).*

4Une définition simple de AdS consiste & prendre comme variété le groupe PSL2(R) lui-méme et comme métrique, sa
métrique de Killing (renormalisée de sorte que la courbure soit exactement —1).



PROGRAMME DE RECHERCHE COMPLET 14

Les représentations p : I' = POg(2,2) ont attiré beaucoup d’attention récemment, en partie a cause
du fait que AdS est une des huit géométries-modele de Thurston et que de telles représentations per-
mettent de construire des variétés qui sont localement modelées sur AdS (d’autres motivations provien-
nent de la physique, les géométries lorentziennes sont des modeles de 'espace-temps d’Einstein). Parmi
ces représentations, celles qui se factorisent par une représentation de I' dans POg(2,1) sont appelés
représentations fuchsiennes; elles préservent un plan totalement géodésique (isométrique & H?) dans AdS
et en particulier un cercle dans le bord & I'infini de AdS.

De petites déformations p; de p continuent & préserver au bord un objet qui est topologiquement un
cercle (mais géométriquement plus complexe) qu’on appelle quasi-cercle (et les représentations p; sont
appelées quasi-fuchsiennes). Précisément, un quasi-cercle est une application f : RP! — RP! qui est
quasi-symétrique (i.e qui est I'extension au bord d’une application quasi-conforme du disque dans lui-
méme).

Dans ce cas (quasi-fuchsien), le groupe p;(I') préservent aussi I'enveloppe convexe de ce quasi-cercle,
qui est un convexe dans AdS (AdS est un sous-ensemble de I'espace projectif, la convexité s’entend au
sens projectif). Ce convexe est bordé par deux surfaces, chacune isométrique au plan hyperbolique mais
(convexité oblige), ces deux surfaces ne sont pas totalement géodésiques. Le lieu ou ces surfaces ne
sont pas totalement géodésiques (c’est-a-dire, le lieu de stricte convexité) est une lamination géodésique
(dite lamination de plissage) et l'intensité de ce plissage est représenté par une mesure transverse a la
lamination.

Résumons-nous : a toute représentation quasi-fuchsienne dans POg(2,2), on peut associer un quasi-
cercle et une paire A_, A\, + de laminations mesurées. En fait, on peut méme se passer de représentation
quasi-fuchsienne et considérer quasi-cercles et laminations indépendamment. On appelle espace de Te-
ichmiiller universel, l'espace de tous les quasi-cercles (non nécessairement invariants sous l'effet d’une
représentation quasi-fuchsienne).

Dans notre travail en commun avec Jean-Marc Schlenker, nous étudions les relations entre ces différents
objets. Nous obtenons en particulier le résultat suivant.

Théoréme 12 (| ). Soit A_, Ap un couple de laminations remplissantes. Alors il existe un quasi-
cercle au bord de AdS dont l’enveloppe convexe est bordée par deux surfaces plissées par les laminations
A_ et )\4_.

Ce résultat répond a une conjecture de Thurston dans le cas AdS. L’hypothese de laminations ”rem-
plissantes” n’est pas optimal mais fréquent (c’est le cas en particulier des laminations qui sont obtenues
par des représentations quasi-fuchsiennes). Ce résultat a des conséquences sur la dynamique des ”trem-
blements de terre” dans ’espace de Teichmiiuller universel.

Du théoréme de Cauchy au probleme de Weyl.

Le résultat précédent s’inscrit dans une longue histoire de rigidité/flexibilité qui aboutit au probléme
de Weyl (le théoreme 12 en est un cas particulier). Nous décrivons maintenant la geneése de ce probleme.

On s’intéresse tout d’abord & des polyedres dans la sphere S3, I'espace euclidien E? ou 'espace hyper-
bolique H?. On peut associer & un polyedre plusieurs familles d’invariants :

(1) Ses angles diedres (les angles entre ses faces).
(2) Son type combinatoire (qui est un graphe).
(3) La longueur de ses arétes.

(4) La géométrie de ses faces.

La donnée de 1. et 2. s’exprime sous forme de graphe (planaire) étiqueté. La question de la rigidité
se formule en demandant sous quelles hypotheses on peut affirmer que la donnée d’un ou plusieurs de
ces familles d’invariants caractérise un unique polyedre (on peut aussi demander une rigidité forte qui
exclut méme les déformations du premier ordre, on parle alors de rigidité infinitésimale). Et celle de la
flexibilité en demandant qu’apres avoir fixé un ou plusieurs de ces invariants (plus éventuellement d’autres
contraintes), quels sont les polyedres réalisables avec ces invariants. Nous renvoyons au paragraphe 3.3.2
pour des questions ouvertes, voici maintenant un bref survol des résultats connus.
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(1) Le premier résultat est un théoréeme de Cauchy (dont la preuve mérite un chapitre du Livre d’Erdos | , chapitre 12]). 11
affirme que si deux polyedres convexes ont mémes types combinatoires et mémes géométries des faces, ils sont isométriques.
Autrement dit, parmi les polyédres convexes, le type combinatoire et la géométries des faces déterminent les angles diédres.
Ce théoreme est faux pour des polyedres non convexes.

(2) Des polyedres flexibles existent. R. Connelly dans | ] a construit (contre toute attente) une famille a un parametre de
déformations d’un polyedre (nécessairement non convexe) qui préserve la géométrie des faces. Ces exemples sont rares.

(3) Plusieurs familles de polyedres non convexes sont aussi rigides [ ] et [ ]

(4) La conjecture de Stoker est une conjecture de rigidité lorsque le polyedre est convexe et lorsque les angles diedres sont fixés.
Elle est plus limpide dans le cas hyperbolique (les angles dieédres déterminent le polyedre) alors qu’il faut prendre quelques
précautions dans le cas euclidien (penser au cas d’un cube et d’un pavé par exemple). Dans ce cas, elle prétend que toute
déformation qui préserve les angles diedres préserve aussi les angles internes aux faces.

(5) Cette conjecture est fausse dans le cas sphérique [ ].

(6) Elle est démontrée en toute généralité (dans sa version infinitésimale) dans | ].

(7) Enfin, d’aprés un théoréme de [ ], un polyedre convexe est déterminé par d’autres invariants comme son dual dans I’espace
de Sitter.

Le probleme de Weyl est une vaste extension du résultat de rigidité de Cauchy. Dans sa version
classique, il demande si toute métrique de courbure positive sur la sphere peut se réaliser de maniere
unique comme comme la métrique induite au bord d’un convexe de R3. Les polyedres correspondent
a des métriques plates a singularité et sont donc un cas particulier. Ce probleme original de Weyl est
maintenant résolu, ainsi que son extension dans le cas hyperbolique | |

Qu’en est-il du cas des convexes non bornés ? La bonne question peut sembler difficile & formuler
. le plan hyperbolique admet en effet une infinité de plongement totalement géodésiques dans H3. On
espere alors que I'ajout de certaines condition sur le comportement a 'infini permette d’obtenir un énoncé
satisfaisant. Parmi ces conditions a l’infini on par exemple le fait de rencontrer le bord en un quasicercle.
Dans ce cas, le bord du convexe découpe donc le bord de H? en deux composantes connexes, attachées
I'une a 'autre le long du quasicercle par une application que 1’on appelle application de recollement. On
parvient alors aux deux conjectures suivantes, énoncées dans | ].

Conjecture 13 (Probleme de Weyl généralisé, version H?). Soit ¢ > 0 et soit g_, g deux métriques
de courbure constante K € [—1+ ¢, —¢| sur le disque D. Soit u : Ox(D,g9-) v Ooo(D, g+) un homéo
quasisymétrique. Erxiste-t-il un unique convexe  C H? dont le bord a Uinfini est un quasicercle, de sorte
que les métriques induites sur les deuxr composantes connexes de ) soient g— et g4 et que l'application de
recollement soit u ?

Conjecture 14 (Probleme de Weyl généralisé, version AdS3). Soit € > 0 et soit g_, g deuxr métriques
de courbure constante K € [—1 — %,—1 —5] sur le disque D. Soit u : 0x(D,g-) = Oso(D,g+) un
homéomorphisme quasisymétrique. Existe-t-il un unique convere Q C AdS® dont le bord & infini est un
quasicercle, de sorte que les métriques induites sur les deur composantes connexes de ) soient g_ et g4

et que Uapplication de recollement soit u ¢

Le résultat d’existence dans ces deux conjectures est connu et fait 'objet de | ]
Lorsque K — —1 et ¢ — 0, les surfaces de courbure constante sont remplacées par des surfaces plissées,
de sorte que le théoréme 12 constitue la partie existence du cas limite du probleme de Weyl dans AdS?.

3. PROGRAMME DE RECHERCHE

Les projets de recherches présentés dans cette section sont séparés en deux niveaux de difficulté. Les
questions rouges sont celles qui requierent un peu d’investissement et un travail de plus longue haleine.
Les questions bleues sont celles qui sont accessibles immédiatement avec les outils de mon champs de
compétence. Sauf mauvaise surprise, chaque question est réaliste et on donne a chaque fois une idée de
stratégie.
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3.1. Invariants globaux des variétés riemanniennes.

3.1.1. Dimension de Hausdorff de l’ensemble limite des groupes de Schottky. 1l s’agit de la poursuite de
notre collaboration avec Florent Balacheff et fait partie du programme général décrit en 2.2.2. Dans
[ ], nous relions en effet entropie volumique et bas du spectre des longueurs d’une variété rieman-
nienne compacte. Nous étudions maintenant ’entropie volumique des surfaces a bord. Pour les surfaces
hyperboliques, cela revient a étudier la dimension de Hausdorff des groupes libres (aussi appelés groupes
de Schottky) agissant sur H?. Ce projet est en fait double, I'un des aspects est purement hyperbolique,
I’autre est riemannien.

Question 1 Soit (S, hyp) une surface hyperbolique a bord non vide. Peut on trouver une expression de
I’entropie volumique de S comme une fonction des coordonnées de Fenchel-Nielsen de la surface.

L’approche la plus efficace pour calculer une dimension de Hausdorfl consiste & utiliser le ”formalisme thermodynamique [ ]
ou [ ]. La théorie nous apprend que le probléme revient & calculer Ientropie d’un certain graphe (métrique) et notre résultat
précédent [ | s’applique.

Au-dela de la géométrie hyperbolique, on peut déposer sur une surface a bord n’importe quel type de
métrique et se demander comment se comporte I’exposant critique du groupe en fonction de la métrique
et poser la question suivante, motivée en partie par le projet décrit au paragraphe 3.3.4.

Question 2 Soit (S, hyp) une surface hyperbolique a bord non vide et soit g une autre métrique sur S
de méme volume et qui rende le bord géodésique et de méme longueur que le bord hyperbolique. On note
do I'exposant critique du groupe fondamental I' calculé avec la métrique hyperbolique et ¢ celui calculé
avec la métrique g. A-t-on alors § > gy ?

Il est peu réaliste de pouvoir obtenir une inégalité optimale. Toute les idées de preuve de la conjecture d’entropie minimale s’appuient
en effet lourdement sur le fait que ’ensemble limite d’un groupe compact est le bord tout entier. Cela simplifie en effet énormément le
calcul des mesures de Patterson-Sullivan.

En revanche, on peut s’attendre & obtenir une inégalité non optimale en faisant marcher les idées originelles de Gromov (techniques
de smoothing) qui conduisaient déja a des version non optimales de la conjecture d’entropie minimale dans [ ]. Ces techniques
sont plus souples et pourraient fonctionner dans le cas des surfaces a bord.

Les variétés de Morse ne peuvent étre compactes lorsque le rang du groupe de Lie d’isométries de M
est supérieur a 2. FEn effet, un groupe cocompact dans un groupe de rang supérieur n’est pas Gromov-
hyperbolique. Ainsi, ’ensemble limite du groupe de Morse I' ne remplit pas toute la sphere & 'infini
Do M et il y a un intérét certain & comprendre les propriétés de cet ensemble limite. Le probleme que
nous décrivons dans ce paragraphe constitue un prolongement de | |, au sens ou nous cherchons a
classifier les groupes de Morse en comparant leur comportement a des phénomenes de rang 1. En effet,
les variétés hyperboliques réelles convexe-cocompactes ont un ensemble limite dont la dimension peut étre
arbitrairement proche de n —1 = dim 0, HE | |. Alors que les variétés hyperboliques quaternioniques
convexe-cocompactes ont un ensemble limite dont la dimension est uniformément distante de dim 80011{[(5
[ | (le cas complexe n’est pas connu). Pour le rang supérieur | | tend & indiquer que la situation
pourrait étre celle du cas quaternionique. Repenser son approche dans le cas des groupes de Morse
permettrait de répondre a la question suivante.

Question 3 La dimension de Hausdorff de I'ensemble limite d’un groupe de Morse est-elle arbitrairement
proche de dim 0o M 7

Noter que plusieurs caractérisations de la propriété de Morse sont démontrées dans | ], deux d’entre elles sont particulierement
adaptées & la situation puisqu’elles sont exprimées en terme de dynamique du groupe & l'infini. Une prépublication récente [ ]
compare aussi la dimension de Hausdorff de I’ensemble limite avec un certain exposant critique.
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3.1.2. Différents problémes d’entropie minimale. Revenons au cas de I’entropie. Les méthodes de | ]
en utilisant la cohomologie bornée du groupe fondamental ont une extension naturelle pour ’espace
symétrique dont le groupe de Lie est SPy,(R), l'espace de Siegel. En effet le cocycle borné qui a servi
a conclure la preuve du théoréme 5 possede un équivalent direct pour le groupe SPs,(R) : le cocycle de
Maslov de [ ]. Je me suis beaucoup penché sur la question et je n’en ai pour l'instant tiré qu’une
inégalité de calibration approchée, non optimale. Cela est probablement du a la technicité supérieure de
plusieurs aspects du probleme. Bien qu’une telle inégalité ne soit déja pas sans intérét (elle démontre en
particulier que ’entropie minimale est strictement positive), il existe probablement un moyen de terminer
le calcul.

Question 4 Démontrer une inégalité d’entropie minimale pour un quotient compact de ’espace de
Siegel (ou se contenter d’une inégalité approchée).

Toujours pour le méme probléeme d’entropie minimale, il est permis de penser que le cas des espaces
symétriques hermitiens est accessible en toute généralité (voir une proposition d’approche plus bas).

Question 5 Démontrer un résultat d’entropie minimale pour les espaces symétriques hermitiens.

La spécificité des espaces hermitiens vis-a-vis du probléme d’entropie minimale tient au fait que la forme kahlérienne d’un espace

hermitien vérifie une certaine inégalité, adaptable a la calibration, I'inégalité de Wirtinger [ , p. 40]. Cette inégalité bien connue a
déja servie dans le contexte des surfaces minimales en tant qu’inégalité de calibration : [ ] et [ ] et méme pour le probléme de
I’entropie minimale de H? : [ , chapitre 6]. Elle affirme que toute sous-variété complexe est calibrée par une puissance adaptée

de la forme k&hlérienne. Bien str, cette seule remarque ne suffit pas puisqu’il faut encore trouver un moyen d’amener cette forme de
Kahler sur I’espace des mesures au bord, ce qui n’a rien de naturel. Voici cependant comment cela fonctionne dans H2. Noter que H?
est lui-méme un espace hermitien (c’est une droite hyperbolique complexe). Le groupe des difféomorphismes du cercle, Diff(S') agit sur
Pespace des mesures par changement de variables et I'orbite de la fonction constante 1 est dense. Dans Darticle [ ], cette orbite est
pensée comme un espace homogene,

Diff(St)/S?.

C’est un espace kithlérien : pour la structure complexe, il suffit de prendre une fonction dans I’orbite de Diff(S!), de la décomposer en
série de Fourier, (ce qui donne un systéme de coordonnées), puis de changer cos(n-) en sin(n-) et sin(n-) en — cos(n-), c’est-a-dire que
Diff(S1)/S! est un produit de plans complexes. La forme kiihlérienne est précisément la forme calibrante que nous construisons avec la
méthode du cocycle de la page 9. Dans | ], il est expliqué que toute orbite coadjointe jouit de telles propriétés. Pour implémenter
cette méthode au cas des espaces hermitiens complexes, il faut donc

(1) Soit comprendre comment construire sur l’espace de mesures sur le bord une structure complexe & partir de la structure
complexe de ’espace hermitien.

(2) Soit interpréter I’espace des mesures (un ensemble dense suffirait) comme une orbite coadjointe sous l’action d’un ”groupe de
Lie” de dimension infinie. Cela demande de clarifier certains problemes de régularité (c’est d’ailleurs un enjeu indépendant)
inhérent a ce type de contexte.

Nous avons vu les rapports qu’il existe entre entropie minimale, calibration et cohomologie bornée. En
fait, il se pourrait que les liens soient encore plus étroits.

La norme d’une classe de cohomologie bornée [c] est la quantité
lielll = inf ||
ci~c
Pour calculer cette norme, il faut donc trouver le cocycle ¢’ cohomologue & c et de plus petite norme absolue. Dans | I, je
montre que la forme calibrante se construit avec le cup produit de classes d’Euler (toujours avec la méthode de 9). Dans | R

M. Bucher-Karlsson montre que ce méme cocycle réalise la norme de sa classe. Cette troublante analogie nous conduit a formuler la
question suivante

Question 6 Est-il vrai qu’un cocycle qui réalise la norme de sa classe donne une forme calibrante ?

Cette question semble difficile mais se découpe en deux parties qui sont indépendantes et plus faciles. En effet, si on suppose que
le cocycle qui réalise la norme est nul sur les cobords (c’est le cas du cocycle de | ]), cette condition s’interpréte trés facilement
du c6té de la forme différentielle associée et permet d’en tirer beaucoup d’informations. Ainsi donc, il s’agirait de montrer que cette
condition est toujours réalisée et qu’elle simplifie largement le probléme de la calibration.
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La question réciproque de la question précédente peut se poser aussi mais je n’ai pas d’opinion sur une
fagon de I'attaquer.

L’entropie minimale des espaces symétriques est aussi reliée au volume minimal de la page 7. En effet,
par l'intermédiaire de la formule de Bishop, I'entropie peut étre vue comme une version éparpillée de la
courbure de Ricci : une hypothese de courbure de Ricci se transmet a 'entropie. L’inégalité de Bishop
n’est optimale que dans le cas hyperbolique réel puisqu’elle revient a comparer les volumes de boules a
ceux du modele de courbure constante. Besson, Courtois et Gallot montrent alors dans | | que le
volume minimal d’une variété qui supporte une métrique hyperbolique réelle est donné par la métrique
hyperbolique.

Question 7 Adapter 'inégalité de Bishop & d’autres modeles localement symétriques. En déduire des
résultats sur le volume minimal pour de espaces localement symétriques de rangs supérieurs.

Une derniere avancée dans le probleme de ’entropie des espaces localement symétriques concerne les
variétés non compactes mais de volume fini. Dans ce cas, il est courant de remplacer I'entropie de la
métrique g par l'exposant critique du groupe. C’est d’ailleurs ce que font | | et | ]. Une fois
cette convention posée, le probleme se formule comme dans le cas compact.

Question 8 Démontrer un théoreme d’entropie minimale pour des quotients non compacts de (IHIQ)n
lorsque les métriques g et gg sont de volume fini.

En plus de remplacer ’entropie de g par I’exposant critique du groupe fondamental, | ] décrit les autres ajustements & effectuer.
Une des étapes de la preuve dans le cas compact fait usage du théoréeme de Stokes dans un domaine fondamental pour action du
groupe. Ce théoréme nécessite bien str de la compacité. Le remede revient alors & appliquer le théoréme de Stokes sur une exhaustion
par des compacts du domaine fondamental et & controler le reste qui est le volume des plongements ®4 dans les cusps. La géométrie des
cusps des variétés modelées sur (HQ)R est bien comprise, ce sont des variétés SOL (voir aussi [ ] qui traite du cas non compact).

3.2. Géométrie métrique.

3.2.1. Les probléemes d’entropie minimale dans des contextes métriques. La premiere question de ce para-
graphe m’a été posée par F. Paulin a Orsay. Elle vise & établir des variantes des résultats d’entropie
minimale lorsque la géométrie est modelée sur celle d’'un immeuble. Le cas des arbres est déja bien connu,
[ et | | et va dans le sens du théoréme riemannien : la métrique d’entropie minimale sur le
quotient d’un arbre régulier (dont tous les sommets ont mémes valences) est la métrique ”symétrique”,
celle qui donne le méme poids a chaque aréte.

Dans le cas des immeubles, la question est trop difficile en toute généralité mais il y a un analogue
d’un cas riemannien étudié dont le résultat correspondant dans les immeubles n’a pas été établi : celui
des produits d’arbres. Soit donc M un complexe cubique dont le revétement universel est un produit
d’arbres réguliers. On munit M de la métrique gy qui est euclidienne dans chaque cube et qui dépose une
métrique ”symétrique” sur chaque facteur du 1-squelette. Les métriques g que 'on veut comparer a gg
sont des métriques riemanniennes quelconque dans l'intérieur des cubes qui rendent géodésiques (au sens
euclidien) les bords de ces cubes.

Question 9 Montrer que go minimise I’entropie parmi toutes les métriques g de mémes volumes.

Les principaux ingrédients de la preuve riemannienne existent toujours dans ce contexte des immeubles. En effet, les mesures de
Patterson-Sullivan sont construites de fagon similaire dans ce cadre | ] ainsi que le barycentre des mesures | ]. 1l s’agit de
faire jouer le méme role a ces objets.

Reprenons une derniere fois le cadre classique des espaces symétriques. Dans [ ], Pauteur mon-
tre que la métrique symétrique (en rang supérieur) ne minimise plus l'entropie parmi les métriques
finslériennes de volume fixé. Il construit une métrique de Finsler qui minimise ’entropie mais seulement
parmi les métriques qui sont G-invariantes (pour définir une métrique sur le quotient, la I'-invariance
suffirait). Ses méthodes sont différentes des techniques de la page 9, de nature plus algébrique. Il est
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conjecturé que la métrique de P. Verovic minimise I’entropie parmi toutes les métriques de Finsler I'-
invariantes. Répondre a cette conjecture semble difficile. La question suivante serait une premiere étape
(et d’un intérét indépendant).

Question 10 Peut on construire une famille de mesure de Patterson-Sullivan associée a la métrique
finslérienne de | s

En rang supérieur, les groupes co-compacts ne sont pas des groupes de Morse. Néanmoins, récemment dans [ ], les auteurs
construisent cette famille de mesure dans le cas des groupes de Morse. C’est une grande source d’inspiration pour la question précédente.
On pourrait aussi en déduire une profonde analyse de la dynamique du flot géodésique de cette géométrie.

3.2.2. Retour auz géométries de Hilbert. Deux questions naturelles pourraient constituer une suite du
travail avec J. Cristina de | | dans I’étude des géométries de Hilbert de basse régularité. On rappelle
que nous calculons 'entropie finslérienne des convexes de régularité a-Ahlfors en fonction de a. D’autre
part, [ ] montre que si la régularité est de classe & C'!, 'entropie est maximale, égale & 1. Or,
il existe encore des espaces de Banach intermédiaires qui sont contenus dans tous les espaces C1'* mais
qui contiennent strictement C''. Cela conduit & se demander oti est précisément le point de bifurcation
d’entropie extrémale.

Question 11 Existe-t-il un espace de Banach qui contienne dans tous les espaces C® et qui contienne
une fonction qui engendre un convexe d’entropie strictement inférieure a 1. Existe-t-il un espace de
Banach qui contient tous les espaces C1'® et contenu strictement dans C'' qui permettent de construire
des phénomenes mixtes entropie maximale/entropie inférieure & 1. Qu’en est il des mémes phénomenes
dans le cas opposé de ’entropie nulle ?

Noter que c’est aussi en basse régularité que I'on peut construire des exemples ot I'entropie n’existe
pas. La question de savoir ou se situe précisément ce type de phénomenes est donc reliée.

Question 11 bis Pour quels espaces de régularités peut-on affirmer que h = h ?

Les techniques de calcul d’entropies en basse régularité de notre article commun sont largement réutilisables puisqu’elles se proposent
de faire usage de la dérivée seconde (au sens faible) et de relier les valeurs de l’entropie aux propriétés de I’espace métrique mesuré
donné par le support de la dérivée seconde (qui est une mesure).

3.3. Rigidité/Flexibilité.

3.3.1. Représentations de groupes discrets. Jai identifié dans | | les situations ot les représentations
de Morse sont tres flexibles et ou 'espace des déformations est non compact. Comme annoncé & la section
2.2.4, I'objectif suivant est d’analyser la forme de I'espace des représentations. La question est trop vague
si on ne fixe pas le groupe de Lie G, image des représentations et ne me semble en fait accessible avec les
outils actuels que dans le cas ou G =SP5,(R). Il existe bien str des métriques naturelles sur l'espace des
représentations mais il est naturel de s’intéresser dans un premier temps a la topologie de cet espace.

Question 12 Quelle est la topologie de I'espace des représentations de Morse d’un groupe de surface
dans SPy,(R) 7

Une approche possible consiste & analyser le travail | ]. En effet les auteurs identifient des zones sur la surface (fixant une
métrique hyperbolique annexe) pour lesquelles I’action du sous-groupe correspondant & la sous-surface est plus facile & comprendre,
notamment par I'intermédiaire de son action sur le cone asymptotique de I’espace de Siegel.

Cela permet probablement de mettre en place une stratégie calquée sur la preuve de la simple connexité de ’espace de Teichmiiller;

les sous-surfaces de [ | jouant le role de la décomposition en pantalons, voir | 1.
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Toujours dans le cas des représentations de surface dans SP9,(RR), la question suivante est mentionnée
en toute généralité dans la these de M. Wolff mais semble se simplifier dans le cas des représentations de
Morse. La motivation associée a ce probleme est que sa résolution permet de décrire une compactification
de I’espace des représentations. Bien str, la démarche consiste a suivre celle de [ .

Question 13 Soit (p, ), une suite divergente de représentations de Morse d’un groupe de surface dans
SP9,(R). On suppose que la classe de Maslov de p,, est constante. Peut on définir une classe de Maslov
de P'action limite du groupe de surface sur I'immeuble de type SPs, 7

3.3.2. Rigidité des polyedres pour la géométrie de Hilbert. C’est une partie de mon projet de recherche en
commun avec J.M. Schlenker & Luxembourg. Elle s’articule autour de deux questions et les polyedres en
sont les objets principaux.

Rappelons tout d’abord que la distance de Hilbert est définie pour les points a l’intérieur d’un convexe
de I’espace projectif. On se demande alors quelle structure peut avoir [’extérieur d’un convexe. Supposons
d’abord que I’ensemble convexe est défini par une équation algébrique. Nous complexifions alors le convexe
en complexifiant sont équation. Puis, par le théoreme de Bezout, le droite complexe engendrée par deux
points a l'extérieur du convexe rencontre le complexe complexifié en un certain nombre de paires de
nombres complexes conjugués. On forme alors un birrapport en utilisant ces intersections complexes.

Les motivations pour cette construction sont nombreuses. Tout d’abord, cela permet de définir des
angles diédres pour les arétes d’un polytope en géométrie de Hilbert. En effet le dual d’un polytope a
I'intérieur d’un convexe est un polytope a l'extérieur du convexe dual. Il s’agit donc de définir un angle
en utilisant la relation classique angle diedre d’une aréte = longueur de ’aréte duale du polyedre dual.
Cette notion d’angles diedres vient avec une formule de Schlaffli, une formule variationnelle qui donne la
dérivée du volume d’un polytope en fonction de la dérivée de ses angles diedres. C’est une formule clé
dans I’étude de la rigidité des polyédres euclidiens. C’est donc naturellement que nous posons la question
suivante.

Question 14 Etudier les propriétés de la distance définie en dehors d’un convexe projectif et 1'utiliser
pour construire une formule de Schlaffli adaptée. A l'aide de cette formule, généraliser la classe des
polyedres rigides a une classe plus vaste.

Cette question s’inscrit aussi dans le contexte général du probleme de Weyl.

Le dessin suivant a été fait avec un programme Sagemath. La partie rouge représente le convexe
2% 4 95 = 1, la partie bleue est le graphe de la fonction ”défaut d’inégalité triangulaire” pour la distance
décrite plus haut. La partie grise représente le lieu ou cette fonction est négative, c’est-a-dire le lieu ou
la distance vérifie une inégalité triangulaire inverse. On constate ici la cohérence avec le cas géométrie
hyperbolique/géométrie de Sitter.
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3.3.3. Retour au probléeme de Weyl. D’apres le paragraphe 2.2.4, a un couple de laminations remplissantes
correspond un quasi-cercle au bord de ’espace AdS qui permet de reconstruire les deux laminations comme
laminations de plissage au bord de I’enveloppe convexe d’un quasi-cercle. La question se pose aussi pour
un quasi-cercle au bord de l’espace hyperbolique H3.

Question 15 Soit (A*, A7) un couple de laminations remplissant sur le disque D?. 11 existe alors une
application u : RP! — CP! dont I’image est un quasi-cercle tel que son enveloppe convexe dans H® soit
borné par deux surfaces plissées le long de \* et A~

La réponse a cette question est connue dans le cas quasi-fuchsien [BO04].

Pour démontrer le théoreme 12, nous utilisons un processus d’approximation du couple de laminations par des laminations polyédrales.
Ce résultat d’approximation est encore vrai dans le cas hyperboliques et on peut donc envisager de récupérer une partie de la preuve.
Dans la cas AdS, il est facile de contréler géométriquement la divergence des constantes de quasi-symétrie du quasi-cercle (controler
les constantes de quasi-symétrie permet d’utiliser des résultats de précompacité dans les applications quasi-fuchsiennes de constantes
bornées), la divergence correspond & lapparition d’un certain quasi-cercle trés concret appelé le rhombus dans [BDMS19]. Dans le cas
hyperbolique, la discussion doit s’accompagner d’un lemme de "non bubbling off” qui joue le méme role. La démarche est entreprise
dans [BO04].

3.3.4. Stabilité C° de I’entropie topologique. Dans un projet en cours avec Marcelo Alves (Bruxelles), Lucas
Dahinden (Heidelberg) et Matthias Miewes (Aachen), nous étudions la régularité de l’entropie comme
fonction de la métrique en topologie C° (i.e on s’intéresse & des déformations continues de métriques
(lisses)).

Voici par exemple I'un des projets qui nous tient a coeur. Le théoreme de Denvir-Mackay [DM98] affirme
que si une métrique sur le tore T? admet une géodésique fermée contractile, son entropie est positive.

Question 16 Au voisinage (C°) d’une telle métrique sur le tore, ’entropie est elle positive ?

Noter que la question 2 permet de répondre positivement & cette question (méme avec une inégalité non optimale). En effet, par la
théorie de Morse, les métriques au voisinage de celle considérée par Denvir-Mackay satisfont & la méme propriété d’avoir une géodésique
fermée contractile. Par ailleurs la longueur de cette géodésique est continue en topologie CO°.
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