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Introduction

Ce texte constitue les notes d’un cours donné & I’'Ecole Polytechnique Fédérale de
Lausanne au printemps 2017. Le contenu est adapté aux étudiants de Master qui ont déja
suivi un premier cours de géométrie différentielle ! et qui sont & 1’aise avec les concepts
de base de ’algébre linéaire, ainsi qu’avec quelques notions plus avancées d’algébre bil-
inéaire. En revanche, nous n’utiliserons pas (sauf en une exception) la théorie générale
de la géométrie riemannienne. Bien que la géométrie hyperbolique soit 'un des pre-
miers exemples, expliquons pourquoi ce n’est pas indispensable et en quoi les méthodes
exposées ici différent des méthodes riemanniennes.

La géomeétrie hyperbolique est un espace métrique, ol la métrique est un espace de
longueur (on mesure la distance entre deux points comme la plus petite longueur de
courbe qui joint ces deux points). Dans cette situation, la géométrie riemannienne se
propose de développer une série d’outils de nature différentielle, par I'intermédiaire de
champs de tenseurs sur la variété, obtenus en dérivant la métrique. Les résultats de
la théorie consistent & interpréter géométriquement (ou au moins topologiquement) le
comportement de ces tenseurs. Ici, notre point de vue est bien différent et beaucoup
plus algébrique. En effet, ce qui singularise la géométrie hyperbolique et ce qui lui donne
toute sa richesse, c’est la taille de son groupe d’isométries : la distance hyperbolique a
énormément d’isométries.

Comparons, par exemple, la taille du groupe des isométries euclidiennes et des
isométries hyperboliques. Cette comparaison peut étre rendue possible par 'intermédiaire
du bord des deux espaces (hyperboliques et euclidiens) : dans les deux cas, c’est une
sphére. C’est un fait que les isométries peuvent se prolonger au bord (elles sont unifor-
mément continues sur un ensemble dense) et elles déposent donc une certaine géométrie
sur ce bord. La géométrie déposée par la structure euclidienne est la géométrie usuelle
de la sphére, celle qui provient de son plongement canonique dans l’espace euclidien.
La géométrie qui lui vient de ’espace hyperbolique est la géométrie conforme. Une
transformation est dite conforme si elle préserve les angles. Autrement dit, les isométries
euclidiennes préservent une distance sur la sphére tandis que les isométries hyperboliques
ne préservent que les angles, ce qui est plus souple.

Cela explique pourquoi la stratégie employé dans ce cours consiste tout d’abord a
montrer que le groupe des isométries est suffisamment transitif sur un certain nombre
d’objets associés a la géométrie (sur ’espace lui-méme, sur son bord, sur les géodésiques,...)
puis & commencer les preuves par la remarque suivante :

Quitte a faire agir le groupe, on peut supposer que ...

...On peut supposer que la situation est explicite et plus simple.

Cette propriété remarquable de la géométrie hyperbolique pourrait laisser penser qu’il
s’agit d’'une géométrie exceptionnelle, anecdotique. En réalité, ce n’est pas le cas, c’est
méme en fait la géométrie la plus fréquente, la plus générique. Pour tenter de justifier

'En fait, seule la définition de variété différentiable sera utilisée



cette assertion, regardons le cas des surfaces. Rappelons que les surfaces compactes
connexes et orientables sont classifiées topologiquement et qu’elles constituent la famille
(Xg)g=0 ot Xq est la somme connexe de g tores (par convention ¥g est la spheére).

{jmu/w ”‘/;\1'«"\‘/\1 . Hﬂ%\ﬂ& "7\/\1 .
v I\

4
=

F
T
\—

Figure 1: Classification topologique des surfaces

Il existe trois géométries classiques (qui correspondent aux trois géométries de cour-
bure constante) : la géométrie sphérique, euclidienne et hyperbolique et on peut se de-
mander s’il existe des métriques sur les surfaces ¥, qui les rendent localement isométriques
a I'un de ces trois espaces. Le théoréme suivant illustre la généricité de la géométrie hy-
perbolique.

Théoréme.

1. Sur chaque surface, il existe une métrique et une et une seule des trois géométries
qui lui est localement isométrique.

2. Sur la sphére X, il s’agit de la géométrie sphérique, sur le tore 31, il s’agit de la
géométrie euclidienne et sur toutes les autres surfaces ¥4 avec g = 2, il s’agit de
la géométrie hyperbolique.

Le fait que l'une des géométries exclue les deux autres est une conséquence du
théoréme de Gauss-Bonnet. Le fait que les surfaces de genre g > 2 admettent une
métrique localement hyperbolique provient d’une construction explicite que nous ver-
rons plus loin dans ce texte. Ce théoréme est aussi une conséquence de 'uniformisation
des surfaces de Riemann.

Une premiére motivation a I’étude de la géométrie hyperbolique est donc son om-
niprésence. Une seconde motivation est de nature historique. En effet la géométrie
hyperbolique ne satisfait pas au cinquiéme axiome d’Euclide : étant donné une droite et
un point extérieur a cette droite, il existe une infinité de droites paralléles passant par
ce point. Elle répond donc (par la négative) aux nombreuses tentatives de preuves du
cinquiéme postulat d’Euclide & partir des autres.

A ce stade de lintroduction, le lecteur aura bien compris que notre objectif est
d’explorer la géométrie hyperbolique. Mais qu’en est-il des groupes discrets et comment
ces deux sujets sont-ils reliés 7 C’est que, dans une seconde partie de ce texte, nous
nous intéressons aux variétés hyperboliques, c¢’est-a-dire aux variétés différentiables qui
sont obtenues en recollant des morceaux de I'espace hyperbolique (nous avons déja vu
par exemple que l'on peut obtenir toute surface de genre g > 2 de cette maniére). Nous



montrerons alors un résultat qui affirme que toute variété hyperbolique est obtenue
comme le quotient de ’espace hyperbolique par un sous-groupe discret de son groupe
des isométries. Il y a donc une correspondance bijective

{variété hyperbolique} «— {I" C Isom(H") discret} .

L’espace hyperbolique est donc le "modéle local" des variétés hyperboliques, ou, pour
le dire avec la terminologie du chapitre 2, leur revétement universel. C’est encore une
fois la taille du groupe d’isométries qui donne toute sa richesse & la théorie : plus il
y a d’isométries, plus il y a de groupes discrets. Reconsidérons une derniére fois la
trichotomie sphérique, euclidienne et hyperbolique. Les groupes discrets d’isométries
de la sphére sont des groupes finis, les groupes discrets d’isométries euclidiennes sont
classifiés par le théoréme de Bieberbach tandis qu'une classification des groupes discrets
d’isométries hyperboliques semble inaccessible avec les outils actuels 2.

Ce document s’organise alors de la fagon suivante. Le premier chapitre concerne
la géométrie hyperbolique proprement dite, avec une certaine emphase pour les dimen-
sions 2 et 3. Le second chapitre, bien que d’un intérét indépendant, consiste a mettre
en place les préliminaires topologiques pour établir cette correspondance groupes dis-
crets/variétés. Le dernier chapitre s’attaque a I’étude des groupes discrets d’isométries,
en tachant de faire fonctionner ce dictionnaire entre les propriétés algébriques du groupe
et les propriétés géométriques du quotient.

La rédaction de ce cours a grandement bénéficié des nombreuses discussions avec
Adrien Marcone, lors des (interminables) séances de préparation des exercices. Je tiens
a ’en remercier vivement. Toute erreur ou imprécision ne pourrait cependant pas lui
étre reprochée.

20n peut néanmoins constater des progrés spectaculaires obtenus avec les techniques de théorie
géométrique des groupes ref
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Chapter 1

La géométrie hyperbolique

1.1 Une étude préliminaire : le groupe de Mobius de la
sphére

Avant d’attaquer I'étude de la géométrie hyperbolique, nous commencons par un pe-
tit échauffement sur le groupe des transformations de la sphére qui préservent les an-
gles. Nous montrerons ensuite que ce groupe est exactement le groupe des isométries
de I'espace hyperbolique. Ce point de vue est important pour certaines propriétés de la
géométrie hyperbolique.

1.1.1 Reflexions a travers des hyperplans

Ces transformations sont probablement déja bien connues. Notons E™ ’espace euclidien

de dimension n, c’est-a-dire R™ muni de sa métrique euclidienne usuelle ([|z||* = Y1 | 2?)

puis
P(a,t)={z € E" | a-z =t}

ol a est un vecteur de norme 1 et - est le produit scalaire usuel obtenu par polarisation
de ||-||. L’ensemble P(a,t) est 'hyperplan affine dont un vecteur normal est a et passant
par le point ta.

La réflexion a travers 'hyerplan P(a,t) est 'application p définie par

plx)=x+4+2(t—a-x)a
Les propriétés suivantes des réflexions sont bien connues (ref ).
Théoréme 1.1.1. Soit p une réflexion dans un hyperplan P(a,t)
1. Un point x est fixé par p si et seulement si x € P(a,t).
2. p est une involution.
3. p est une isométrie.
4. Inversement le groupe des isométries affines de E™ est engendré par les réflexions
a travers les hyperplans
1.1.2 Reéflexions a travers des sphéres

Pour un point @ € E™ et un réel positif r, on note S(a,r) la sphére ce centre a et de
rayon r, c¢’est-a-dire I’ensemble

S(a,r)={z € E" | |z —a|=r}.
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La réflexion (ou l'inversion) o a travers la sphére S(a,r) est définie par la condition
o(z) =a+s(x—a)
avec s un réel positif tel que
2

lo(x) —al- |z —al =7

Cela conduit & I'expression de o

Figure 1.1: Comment construire I'image d’un point par une inversion

Le théoréme suivant est ’analogue du précédent pour des réflexions & travers des
sphéres.

Théoréme 1.1.2. Soit o une réflexion dans une sphére S(a,r). Alors
1. o(x) =z si et seulement si x € S(a,r).
2. o%(z) = = pour tout x # a.

3. Pour x ety différetents de a,

2
rlz —y
|o(z) = o(y)| =
[z —ally —a
Preuve: 1. Si o(x) = x, alors, compte tenu de |o(x) — a| - |x — a] = 72, on obtient

|z — a| = r. Inversement, si |z — a| = r, la formule explicite montre que o(z) = x.

T

o (z) = a—|—<‘U(I)_a|>2(U(az)—a)

- oo (552 (52 e

= X
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oa) o) = o (E20 - 020

o —al* |y —af’

r2< 1 2($—a).(y_a)+ 1 >1/2

2 2 2 2
|z — |z —al” |y —al ly — a

2|z —y|
|z —al |y — a

O]

Le fait que le point a joue un réle particulier dans ’expression de de o (il est envoyé
a 'infini) nous améne a rajouter a l'espace E™ un point de sorte que o devienne une
bijection sur le nouvel espace. C’est I'objectif du paragraphe suivant.

1.1.3 Compactification d’Alexandrov de R"

On identifie E™ & E™ x {0} dans E™!. La projection stéréographique de E™ sur
S™\ {en+1} est définie en projetant x € E™ sur le point 7(z) de la sphére S™ qui rencontre
la droite passant par x et e,41.

|Z\2—1)

Les conditions 7(z) = = + s(epy1 — ) et |7r(x)]2 + 1 (d’ott 'on déduit s = P

permetten d’obtenir ’expression

211 2z, |x]2 -1
W(x) — 5 st 3 R 5
lz|” + 1 lz|+ 1" |z|”+ 1

1.1.4 Groupe de Mobius de la sphére

Il est conforme, transitif sur les sphéres de S*~!

1.1.5 Extensions de Poincaré
1.2 Différents modéles de la géométrie hyperbolique

Notre premiére tache est de définir la géométrie hyperbolique. Nous donnons plusieurs
définitions, qui correspondent & plusieurs "modéles" et nous montrons ensuite que ces
points de vue sont équivalents. Il est commode de disposer de plusieurs incarnations de
la géométrie hyperbolique, chacune d’entre elles servira & mener I’étude d’un aspect bien
particulier de la géométrie. Par exemple, le modéle de 'hyperboloide nous permettra de
trouver le groupe des isométries; le modéles du demi-espace privilégie un point a I'infini
tandis que celui de la boule privilégie un point & lintérieur de l'espace hyperbolique.
Compte tenu de la transitivité du groupe, ces deux modéles rendent explicites beaucoup
de situation génériques.

1.2.1 Le demi-espace supérieur

On note U™ l'ouvert de R™ défini par
U" ={(x1,--- ,zn) € R" tel que z, > 0}.

On veut maintenant munir cet ensemble d’'une métrique. En tant qu’ouvert de R™, U™
une variété différentiable, dont chaque espace tangent s’identifie naturellement au méme
espace R" :

Ve e U”, T,U" =R".
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Sur chacun de ces tangents, on définit une norme. FEn effet, pour z € U" et v =
(vla e 7”71) S Tmun7
2
D i1 Y

2
Tn

2 _
lollz =
Avec cette famille de norme, on peut mesurer la longueur des courbes.

Définition 1.2.1. Soit v : [a,b] — U™ une courbe de classe C' par morceauz. Alors la
longueur de v est donnée par

b b T2
L) = [ ol it = [ YEE

Soit p et ¢ deux points de U". Dans la suite, on notera Cp, 'ensemble des chemins
de classe C! par morceaux 7 : [a,b] — U™ tels que y(a) = p et v(b) = q.

On obtient enfin une notion de distance sur U™ (qu’on appelle en général un espace
de longueur associ¢ & la famille de normes (||-[|,), ) en mesurant la longueur "plus
petite courbe" qui joint deux points donnés.

Définition 1.2.2. Pour p et q deuz points de U™, on note

d(p,q) = inf L(v).

YECp,q
Proposition 1.2.3. d est bien une distance sur U".

On dira alors que (U™, d) est le modéle du demi-espace supérieur de la géométrie
hyperbolique.

Preuve: e La symétrie de d est évidente puisqu’il y a une bijection entre C,, et
Cq4,p en parcourant les chemins en sens inverse.

e On consideére trois points p, g et r. Soit alors € > 0 et soit 7; un chemin qui joint
p & g de longueur d(p,q) + € et un chemin qui joint r a ¢ de longueur d(r, q) + €.
Quitte & reparamétrer, on peut supposer que 7; et 2 sont définis sur [0,1]. On
considére la courbe « (qui joint p & ¢ et définie par

11(2t) si 0<t<1/2
V() = T
y2(2t —1) si 1/2<t <1

Alors d(p, q) < L(v) < d(p,r) + d(r,q) + 2¢.

e Le point le plus délicat consiste en fait & voir que d s’annule uniquement si les points
sont les mémes. Supposons donc que d(p, g) = 0 et, pour £ > 0 fixé, choisissons une
courbe 7. de Cp ¢ de longueur L(v:) < e. Posons M. = supco 1] Ven (). Lastratégie
consiste maintenant a borner M. (c’est le nombre qui sert de comparaison entre
la situation hyperbolique et la situation euclidienne) puis a traiter le cas euclidien.
Clairement M. > p,. Pour majorer M., remarquons déja que le sup est un max
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par continuité : il existe donc b € [0,1] tel que M, = 7., (b). Puis, on a
e =2 L(v%)
> L0 b])

/b \/ i= l’y&‘Z
0

'st
b
> ‘1:( >{dt
[ e
ox (2220))

< >
FTL

On conclut que log (%) < € puis donc que M, < pre® < 2p, si € est suffisamment

petit (ce qu’on peut bien sir supposer). Il suit que

= I’Yez n , tht
L(z.) /V — M/ > ki

Or fol > i1 7L;(t)2dt est la longueur euclidienne de v (notons la 1(v)). On

est donc ramené & prouver la proposition dans le cas euclidien. Raisonnons par
I’absurde et supposons que p # ¢g. C’est donc que pour un certain 7, p; # ¢;.
Choisissons € de sorte que € < |p; — ¢;|, puis une courbe 7. avec 1(7:) < . On
obtient

1(7e) / Z%Z 2dt>/h€z (t)] dt > ‘/ YL a(t dt' pi — ail,

ce qui est une contradiction.
O

Cette preuve donne en plus un éclairage sur la topologie engendrée par la distance d.
On a montré en effet que sur de petits ouverts, les distances euclidiennes et hyperboliques
sont comparables (puisqu’on a réussi a borner M.). Ainsi la topologie engendré par la
distance hyperbolique et la topologie de U™ comme ouvert de R™ sont les mémes. Seul
I’aspect métrique n’a d’intérét dans ’étude de la géométrie hyperbolique.

Notation:ds*> = Z%f? I’élément de longueur hyperbolique (une quantité qui a donc
vocation a étre intégrég le long d’une courbe).

L’infimum de la définition de la distance peut sembler effrayant et la distance hy-
perbolique a l'air trés peu maniable a premiére vue. Nous montrerons en fait que cet
"inf" est un "min" et nous donnerons une description précise des courbes qui réalisent
cet "inf" (voir section 1.3.2)

1.2.2 La boule de Poincaré

La démarche est similaire a la construction de la métrique hyperbolique du demi-espace.
Cette fois-ce 'ouvert de R™ est la boule unité (euclidienne)

={zreR" |z|| <1}



CHAPTER 1. LA GEOMETRIE HYPERBOLIQUE 11

que 'on munit de la métrique (la preuve est semblable)
ds® = 472 dz}
5
(1= l=[I)?
Cela signifie que ’'on mesure la longueur des courbes par
/ o V227
1—[lv(t)

Et, toujours en analogie avec la paragraphe précédent,

d(p,Q)ngéf L(v).
P,q

On se permet de noter les deux distances (de la boule et du demi-espace) de la méme
fagon parce qu’on montrera qu’elles sont isométriques (constituant ainsi deux modéles
de la méme géomeétrie hyperbolique).

1.2.3 L’hyperboloide et le modéle projectif

Nous décrivons maintenant un autre modéle de la géométrie hyperbolique qui est con-
struit par analogie avec la géométrie sphérique. On rappelle que deux points p et ¢ sur
la sphére S™ sont & distance sphérique d si

cosd = (p,q) .

Notons alors R™! I’espace vectoriel R muni de la forme quadratique canonique de
signature (n,1) (la forme de Lorentz),

n
Q(x) = Q(‘Tla"' ,l’n+1) = ng — T4l
i=1

La ligne de niveau de ¢ = —1 (une hyperboloide) a deux composantes connexes, selon
que T,11 est positif ou négatif. On note maintenant

={zeR" g(z) = -1 et zpi1}
puis encore x - y le produit scalaire lorentzien, c’est-a-dire,

(g(z +y) —q(z) —q(y)) = Zﬂ%yz — Tni1Ynt1-
i=1

l\.’)\»—l

Lemme 1.2.4. Pourx ety dans H"™, on ax-y < 0 (en fait mémex-y < -l etx-y < —1

stz #y).

Preuve: Supposons x # y. Puisqu’il n’y a qu’un seul point de H™ par droite vectoriel,
I’'espace Rx+ Ry est un plan. Et, par le théoréme de Sylvester, c’est un plan de signature
(1,1) (pour la forme ¢ restreinte). Son discriminant (dont on rappelle que seul le signe
est bien défini) est négatif. D’o,

q(z)q(y) — (z - y)* <O0.

On obtient donc (z - y)? > 1. De ceci, on ne retient seulement que z,;1 et y,41 sont
supérieurs & 1. Puis, en utilisant

n n
Sat = <ltann ot 34— 14y,
= =1
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Figure 1.2: L’hyperboloide a deux nappes et ’espace hyperbolique

on a

n
r-y = E TiYi — Tn+1Yn+1
i=1

n 12 s p 1/2
= (Z 9312) (Z yz2> — Tnt1Yn+1
i=1 i=1

= \/xiﬂ - 1\/9721“ — 1= Zpt1yns

On vérifie enfin facilement que cette quantité est négative pour des variables supérieurs
al. O

Pour x et y dans H", ce lemme nous donne 'occasion de définir un nombre positif

d(x,y) par
coshd(z,y) = —x - y.

Proposition 1.2.5. L’application (x,y) — d(z,y) est une distance sur H™.

Preuve: Cela résultera des isométries entre les modéles. O

Version infinitésimale de cette distance. Comme dans les deux constructions
précédentes, on peut en fait décrire cette distance en intégrant sur des courbes un "élé-
ment infinitésimal de longueur" (c’est-a-dire une norme sur chaque espace tangent).
Prenons un élément = € H™; la restriction de la forme quadratique ¢ & T, H™ est définie
positive. Cela résulte du théoréme de Sylvester et du lemme suivant

Lemme 1.2.6.
T, H" =z (orthogonal au sens de q).

Preuve: Par le cours de géométrie différentielle, parce que la sous-variété H" est définie
par une submersion, on peut décrire le tangent par le noyau de la différentielle de la
submersion. Ainsi, v est dans T, H" si et seulement si d,q-v = 0. Or, par bilinéarité,
dyq-v=2x-v. O
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On dispose maintenant sur chaque espace tangent d’un produit scalaire, donc d’une
norme. On construit une distance sur H"™ comme espace de longueur :

d(p,q) = inf L
p0) = inf L)

(on note d’ cette distance en attendant de faire une analyse plus fine de la situation mais
on montrera bientot que d = d’).

Version projective. Soit 7 la projection de R"™! sur P*(R) (i.e n(z) = Rx). On
note K" = 7 ({z € R"*! ¢(x) <0}). Cest un ouvert de P"(R) (par définition de la
topologie sur P"(R), la projection 7 est ouverte). On définit maintenant une distance
sur K™ de maniére & forcer 7 & étre une isométrie.
- —T - y
d(T,7) = ————.
a(x)q(y)
L’espace métrique (K", d) est appelé le modéle projectif (ou modéle de Klein) de la
géométrie hyperbolique. Une étude plus approfondie de ce modéle est rédigée comme
exercice ref .

1.2.4 Equivalence entre les modéles

L’objectif de ce paragraphe est de montrer que les différents modéles de la géométrie
hyperbolique sont isométriques.

Qu’est-ce qu’une isométrie 7 Vu la construction des différentes métriques, la ques-
tion mérite d’étre posée... Soit alors (X1,d;) et (Xo,d2) deux espaces métriques con-
struits comme précédemment (X; est une variété différentiable et d; = inf,, L(v)) et soit
aussi ¢ : X1 — Xo un difféomorphisme.

Définition 1.2.7. On dit que ¢ est une isométrie si, pour tout p et q dans Xy,

da2(p(p), ¢(q)) = di(p, q).

Cette définition n’est pas trés facile a tester, en raison du fait que les distances ne
sont pas données explicitement. Il est utile de se donner des condition suffisantes plus
maniables.

1. Le difféomorphisme ¢ envoie toute courbe « sur une courbe de méme longueur.

2. Ou encore : le difffomorphisme ¢ transforme I’élément de longueur de d; en

I’élément de longueur de dy. Plus précisément, pour chaque x; € X;, on s’est
donné un produit scalaire (-, >3151 sur T, X; et, pour chaque x3 € X5, un produit
scalaire (-, )3262 sur Ty, Xo. Puis, on dit que ¢ envoie I'élément de longueur de X

sur ’élément de longueur de X3 si, pour tout 1 € X et tous u, v € Ty, X1,

(doyp - u,dgyp - v)i(zl) = (u, U>:101 .

Alors ¢ est une isométrie car la formule de changement de variables dans le calcul
de la longueur d’une courbe rameéne au cas 1.

Remarque On montre en géométrie riemannienne que ces conditions nécessaires sont
aussi suffisantes.

Théoréme 1.2.8. Les trois espaces de longueur U™, B™ et H™ sont isométriques.
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Preuve: B" et (H",d') sont isométriques.

Construisons tout d’abord une application entre B™ et H". L’idée s’inspire de la
projection stéréographique de la sphére vers le plan. Dans R?t! = R” & R, on dispose
B™ dans ’hyperplan R™ des premiéres coordonnées et I’hyperboloide comme auparavant.
Pour u € B", on trace la droite affine passant par le point s de coordonnées (0,—1)
(toujours compte tenu de la décomposition de R? précédente).

/o

/
/

Figure 1.3: Une isométrie entre B™ et H"

Lemme 1.2.9. La demi-droite affine D = {u + t(u — s), t > 0} coupe U’hyperboloide une
et une seule fois.

Preuve: L’expression gq(u + t(u — s)) est un polynéme de degré 2, dont une étude
standard améne au résultat. Pour cela, on utilise que 0 < ¢(u) < 1, que s et u sont
g-orthogonaux et que ¢(s) = 1. O

On note alors ¢(u) le point de la droite passant par s et w sur H”. Il s’agit maintenant
de trouver une expression explicite de .

Notons = = ¢(u). On sait que x, u et s sont alignés; il existe donc A > 0 tel que
r—s=MNu—s). Dot x+enr1 = ANu+ent1) et © = Au+ (A — 1)epqq. Puis, comme
xr€H™ ona

—1=q(z) = N[u* = (A -1)*

car u et e,4+1 sont orthogonaux et que g(e,4+1) = —1 (on a noté |u| la norme de u : ¢ est
le produit scalaire usuel en restriction & R™. De ce calcul, on obtient A = 1_?7 puis
2
2u 1+ |ul
T = (p(U) 5€n+1-

Sl Juf 11—y
On constate déja que ¢ est lisse. Un raisonnement similaire permettrait d’expliciter son

inverse ¢! et de montrer que ¢! est lisse (on note < -, - > le produit scalaire euclidien).
Pour montrer que ¢ est une isométrie, on commence par différentier ¢ :

2 2 < u,v > 2
Y + 2u v 2+2<u,v>$l2
2
(1_yu\)

= 2
ol (- wp)

dyp - v
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(122 = —1 4 Z.). Et ainsi
<u,v > N
2 2°
(1= 1uP) (1= 1u?)

On peut alors montrer que ¢ est une isométrie

dytp - v + 4u

Sl fuf?

4ol 16 <u,v>2  16u* <u,v>2 16 < u,v >2
dyp-v-dyp-v = 5 + 3 /. 4
(o) (mwe) () ()
4] 16 < u,v >2
= i 5 T 4[1_‘U|2+|U’2—1}
(1-tl)” (1)
4 |o]”

()’

ce qui suffit, via I'identité de polarisation.

B™ et U™ sont isométriques.
Soit f I'inversion de centre —e,, et de rayon v/2 (faire une référence ). On sait que f
a une expression explicite :
T+ ey
2
|z + ey

On vérifie alors facilement que f est un difféomorphisme de B™ sur U" et que f est une
isométrie. [

flz) =2

+ en.

Notation: On note H™ I'un des modéles de la géométrie hyperbolique muni de sa
métrique hyperbolique.

1.3 Géométrie des espaces hyperboliques

1.3.1 Le groupe des isométries de H"

Le groupe des isométries hyperbolique est amené & jouer un réle important dans la suite
de ce cours. On rappelle en effet que la stratégie envisagée ici pour étudier la géométrie
hyperbolique consiste bien souvent a simplifier une situation générique grace a ’action
du groupe des isométries.

Dans cette section, on utilisera le modéle de ’hyperboloide de la géométrie hyper-
bolique, construit comme une des composantes connexes de la ligne de niveau -1 de

q(r) = Z?:l l‘% - ﬂS%H pour x € R+

Définition 1.3.1. Soit
O(n, 1) = Isom(q) = {A € GL,11(R) *A <I(;L _01> A= <Ig _01)}

et
Oy ={peO(n,l1), p(H") =H"} = PO(n,1) := O(n,1)/{£1}.
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On dispose donc de 4 groupes
O(n,1
/
Oxn
X

0% NSO(n, 1)

)

2
\SO(n, 1)
i

et on note 0%(n,1) = Oy NSO(n, 1).

Théoréme 1.3.2. Isom(H") = Oy et Isom™ (H") = O%(n,1) (Isom™ désigne le groupe
des isométries qui préservent l’orientation).

Preuve: On démontre déja le lemme suivant (dont 1'utilisation sera omniprésente dans
la suite de ce cours)

Lemme 1.3.3. Oy est transitif sur H™.

Preuve: Soit x et y dans H”. On rappelle que O(n,1) est transitif sur les droites
négatives d’apreés le théoréme de Witt. Il existe donc ¢ € O(n, 1) telle que p(Rz) = Ry
et puisque. ¢(x) = ¢(y), on sait que p(z) = +y. Ainsi :

1. Si p(x) =y, alors p € Oy et c’est gagné.
2. Si p(z) = —y, alors —p convient.

O

Puis le lemme suivant qui exprime qu’une bijection qui préserve le produit scalaire
est en fait un élément du groupe orthogonal.

Lemme 1.3.4. Soit (E™,(-,-)) un espace euclidien et soit ¢ : E™ — E™ une bijection
telle que, pour tous x, y dans E™,

(o), ¢(y)) = (2,9)-
Alors ¢ est linéaire (i.e ¢ € On(R)).

Preuve: Prenons z et y dans E™ et X\ et o dans R.

lo(Az + py) — Mp(x) — pe(y)|

2 2
= oAz + py)|” + [Ap(x) + po(y)” — 2(e(Ax + py), Ap(x) + pp(y))
= Az + py? + N + 17 [yl + 20, y) — 2000 + py, @) — 2p(Ax + py, y)
et on vérifie facilement que cette derniére quantité est nulle. ]
Venons en maintenant & la preuve du théoréme. Il bien clair qu’il suffit de démontrer
la premiére assertion puisque O°(n, 1) est justement constitué des élément de Oy qui

préserve l'orientation. Par ailleurs, il est clair aussi que Oy est contenu dans Isom(H"™).
Inversement, prenons f € Isom(H"). Pour tous z, y de H", on a donc, par définition

flx)-fly) =2y

et il s’agit de montrer que f est linéaire (c’est-a-dire de montrer une version lorentzienne
du lemme précédent). Puisque Oy est transitif, quitte & composer par un élément de
Oy, on peut supposer que f fixe e,41.
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Pour = 2/ + tey41, on pose y = f(x) =y +t'ept1. Oron a
t'=—f(x) ens1=—f(@) flent1 = —x - enp1 =t

Il suit que f(z + tep+1) = @(x) + tent1. On constate que ¢ vérifie les hypothéses du
lemme puisque, en se restreignant & R™, ¢ lui donne une structure euclidienne. On
conclut que ¢ est linéaire et il en est de méme pour f.

O

Remarque Cette preuve montre aussi qu'une isométrie hyperbolique qui fixe un point
est (conjuguée &) une isométrie euclidienne.

Nous montrons enfin que ce groupe d’isométries est isomorphe au groupe de Mobius,
rencontré au début de ce chapitre.

Théoréme 1.3.5.
Isom(B™) = Mob(B") = Mob(S"™!) = Mob(U") = Isom(U").

Preuve: Les deux inégalités centrales ont été expliquées en ref et proviennent de
Iexistence d’une "extension de Poincaré". Les deux inégalités restantes se prouvent de
la méme maniére et on ne s’occupe que de la premiére.

Soit dans un premier temps ¢ € Mob(B") et montrons que ¢ est une isométrie
hyperbolique. On sait ref que ¢ est une composition de transformations orthogonales et
d’inversions dans des sphéres S(a,r) orthogonales & S*~!. On utilise les formules pour
la distance hyperbolique de ref :

209(x) ~ o)
(1= 6@~ o)

1. Si ¢ est une transformation orthogonale, on a déja remarqué que c’est aussi une
isométrie hyperbolique et la formule ci-dessus permet de s’en apercevoir directe-

cosd(¢(x), ¢(y)) =1+

ment.

2. Si ¢ est une inversion dans S(a,r), il faut faire un peu de calcul. On sait (ref ) que

4 2
2 |z —yl
[o(z) — o(y)|” = 5 g
[z =yl |y —al
et on connait aussi une expression explicite de ¢ :
2
¢(r) =a+ ———=(z —a).
|z —al
D’ou,
22 r
(@) = o + —— (0,2 —a) + ——
|z — al |z — al
puis
22 r
p@) =1 = o =1+ 5la,z—a)+ ——
v —adl v —adl
(la)* = 1) |z — a|* + 2r*(a,z — a) +*

& — al*

2 <|x —al* +2(a,x — a) + |a|]* — 1)

@ — af?
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puisque 72 = |a|® — 1 car S(a,r) et S"~! sont orthogonales. On trouve enfin, en
constatant que |z|> = |a 4z — a|? = |z — a]* + 2(a, z — a) + |a|?,

2 (Jaf* - 1)

@ — af?

o) —1=

9

ce qui permet de conclure directement.

Inversement, soit ¢ une isométrie hyperbolique. La premiére étape consiste a se
ramener au cas oil ¢ fixe un point.

Lemme 1.3.6. Soit b € B". Il existe une transformation de Mobius qui envoie 0 sur b.

Preuve: Soit a ¢ B", S(a,r) une sphére orthogonale & S"~! et o, la réflexion dans la
sphére S(a,r) (on ne note pas o, car 2 = |a|> — 1 donc a détermine 7). Soit encore p,
la réflexion dans I'hyperplan vectoriel dont a est un vecteur normal. On définit a* par

a* = ﬁ Un calcul direct donne
a

(|a!2 — 1) x+ (]x\g +2(z,a*) + 1) a

|z + af?

O'apa(x) =

(utiliser la décomposition x = (z,a)a* + x — (z,a)a*). En particulier, on constate que
0apa(0) = a*. Ainsi, pour b € B", il suffit de considérer 7, = op+ pp~. O

Revenons au théoréme et posons (z) = 74-1(g)d(z). C’est une isométrie hyper-
bolique car les applications 7, sont des compositions d’inversions (donc une isométrie
d’aprés la premiére partie de la preuve). De plus, ¢ fixe maintenant le point 0. C’est
donc une transformation orthogonale, donc en particulier Mobius. O

Définition 1.3.7. Les applications 1, pour b € B™ construites au cours de la preuve
précédente sont appelées des translations hyperboliques.

1.3.2 Distances hyperboliques et géodésiques

Rappelons que la distance hyperbolique est construite comme l'infimum des longueurs
de courbes qui relient deux points donnés. Nous montrons dans ce paragraphe que cet
infimum est en fait un minimum. Les courbes qui réalisent ce minimum sont appelées des
géodésiques (globalement minimisantes). Les géodésiques sont donc les courbes de plus
court chemin. Notre objectif est d’en donner une description géométrique dans chacun
des modéles de la géométrie hyperbolique. Pour cela, nous avons besoin de formules
explicites pour la distance hyperbolique.

Commengons par une formule qui donne la distance a l'origine dans la boule, que
I’on propagera ensuite & tous les points et dans les autres modeéles avec les isométries.

Lemme 1.3.8. Pour u € B", d(0,u) = 2arctanh(|u|) et la distance est réalisée par une
courbe dont le support est un segment euclidien.

Preuve: Comme (presque) toujours dans la suite, on commence par faire agir le groupe
et puisque O,(R) C Isom(H"), on peut supposer que u = ae; avec a > 0. Soit alors
c:[0,1] — B™ une courbe de classe C! par morceaux qui joint 0 & w.

_ [t 21d()]
L(c)—/0 1—|c(t)\2dt.
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Or
‘Cl(t)‘ = = ‘Cl(t)‘ et ]c(t)]Q = Zc;(t)Q > et (8)]
i=1
11 suit que
b 20ei (1)) L o2d(t)
L(c) > | otosdt > | | = Zodt| = 2arctanhi(cr) > 2arctanh
(c) /0 1 _Cl(t)Qd /0 . c(t)Qd ‘ arctan hl(c;) arctan h |u|)

avec égalité si et sculement si les majorations de |¢/(¢)| et |c(t)|* sont exactes et si
2arctanhl(c;) = 2arctanh |u|, c’est-a-dire si et seulement si, pour tout ¢ € [0, 1],

co(t) = =cy(t)=0 et ci(t) >0.
O

Une des conséquence de ce lemme est la comparaison des deux distances de 'hyperboloide

Proposition 1.3.9. On dispose de deux distances dans H™ :
e d définie par coshd(z,y) = —x -y et
o d' définie par d'(x,y) = infiec,  L(7).

Alorsd=d'.

Preuve: On avuque Oy = Isomd. Il est clair aussi que Oy C Isom d’ car Oy préserve
I’élément de longueur. Par transitivité, on peut donc supposer qu'un des points est e,41
(par exemple y = e,41). On rappelle encore que

p: B" — H"
1+|u)®

2u
—F €
1_‘u|2 + 1_‘u‘2 n+1

u

est une isométrie pour d’. L’inverse se calcule facilement et on trouve

wl

T 14t

o (z) =u

six = (z,t) € H" C R""L. Le lemme précédent nous donne

1 | 2’|
tanh —d(0,u) = |u| = ~—
anb 2(0, ) = ol = {71
puis
1 /)2 -1 t—1
tanh? —d(0,u) = 2 5 = 5 = .
2 (1+1) (1+1¢) t+1

La deuxiéme égalité vient du fait que —1 = g(z) = |2/|> — 2. Mais par ailleurs,

tanh? (X) _ coshX —1

2 ) coshX +1
Ainsi
t = coshd(0,u) = coshd'(en41, )
car ¢ est une isométrie. Or t = —e, 41 - x. Il suit que coshd'(e,4+1,2) = —x - e,41. Donc

d=d. O
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A Taide de cette proposition, on obtient un formulaire pour les distances hyper-
boliques de chaque modéle (voir I'exercice ref ).
Corollaire 1.3.10. On note || la distance euclidienne.
1. Pour u et v dans B",
d(u,v) lu — |

tanh
2 1/2
(1= 20w, 0) + Jul® o)

et
ju —v|?

(1= tul?) (1= oF)
2. Pourxz = (2/,t) et y= (v, s) dans U™ (i.et, s >0),

1/2
duw) (1o —yP+ -2\
tanh 2 = .
2 lz" —y'|” + (t + 5)?

|z — y|°
2st

coshd(u,v) =1+

et
coshd(u,v) =1+
Cherchons maintenant les courbes qui réalisent ces distances.

Définition 1.3.11. Soit 7 : [a,b] — H™ une courbe de classe C* par morceauz parcourue
a vitesse 1.

1. On dit que v est une géodésique si, pour tout p = ~y(to) € Im(vy), il existe € > 0 tel
que, si [t —to| < e, alors

d(y(t),p) = L(Vt.t0]) = It — to]
(i.e v minimise localement les distances).

2. On dit que vy est une géodésique (globalement) minimisante si, pour tous (s,t) € R?,
d(y(s),7(t)) = |s — t].

Montrons tout d’abord un théoréme d’existence et d’unicité de géodésiques min-
imisantes

Théoréme 1.3.12. 1. L’espace métrique H™ est complet.

2. Pourp, q dans dans H", il existe une unique courbe de longueur minimale de classe
Cl, v :[0,d = d(p.q)] — H" telle que ||7'(t)|| = 1 pour tout t, v(0) = p et y(d) = q.

3. Sip # q, la courbe v du 2. se prolonge en une unique géodésique minimisante
7+ ]—00, +o00] — H".

Remarque On montre en géométrie riemannienne que le point 2. est toujours vrai
localement et que le fait de pouvoir prolonger les géodésiques est en fait équivalent a la
complétude (théoréme de Hopf-Rinow). Le point 3. est faux en général, méme pour des
variétés complétes, car les géodésiques peuvent cesser d’étre minimisante (par exemple
sur la sphére).
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Preuve: Toutes ces propriétés sont invariantes par isométrie, on a donc le choix du
modeéle; on prend celui de la boule.

1. D’aprés le lemme du début de cette section, les boules fermées sont compactes car
R
Bhyp(0, R) = Beya (0, tanh 5)

et ce qui est vrai en 0 est vrai partout par transitivité du groupe. Cette propriété
est équivalente a la complétude.

2. C’est essentiellement ce qui dit le lemme.

3. On peut supposer p = 0 et ¢ = aey (on peut amener le premier point sur 0, puis,
par son stabilisateur qui est O, (R), envoyer le second sur ’axe Re;). On pose alors
7(t) = tanh (§) e;. Vérifions que v convient.

donc 0
, B g . 1 — tanh 5
H’Y (t)thp_ 2 1_tanh2% =1

Et, en utilisant les formules pour la distance,

d(v(s),7()\ _ [v(s) — ()]
tanh? <2> =

tanh (£) — tanh
2

(1 — tanh (%) tanh %))2
_ 2|5 _t
= tanh 5 2'

Donc d(v(s),~(t)) = |s — |-

Description des géodésiques
On conclut ce paragraphe avec une description géométrique des géodésiques (com-
plétes).

Théoréme 1.3.13. 1. Pour Uhyperboloide H", les géodésiques sont les intersections
avec H™ des plans vectoriels, i.e H™ N (Rx & Ry) pour © # vy, z, y dans H".

2. Pour la boule de Poincaré B™, ce sont des arcs de cercles orthogonaux au bord et
des diametres de B"™.

3. Pour le demi-espace U™, ce sont des droites verticales ou des demi cercles orthog-
onauz ¢ R*1.

4. Pour le modéle de Klein, ce sont des droites projectives.

Remarque La preuve consiste & exploiter adroitement les trois idées suivantes :
1. On a déja montré que les diamétres de B™ sont des géodésiques.

2. Le groupe d’isométries Isom(H™) envoie géodésiques sur géodésiques.
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Figure 1.4: Les géodésiques de 'hyperboloide

Figure 1.5: Les géodésiques de la boule de Poincaré

3. Isom = Mob.

Preuve: 1. Prenons z = e,41 et y quelconque. La courbe H™ N (Rx @ Ry) se
transporte avec l'isométrie entre les deux modéles sur un diamétre de la boule;
c’est donc une géodésique. Si le point x est maintenant quelconque lui-aussi, on
fait agir le groupe :

Lemme 1.3.14. Le groupe d’isométrie Oy est transitif sur l’ensemble des plans
qui contiennent un vecteur x tel que q(x) = —1.

Preuve: Soit V un tel plan. On note R? = Re,, @ Re,1. On veut montrer qu’il
existe A € Oy tel que A(R?) = V. On choisit une base {uy, - ,ups1} de R?!
telle que

o {up,ups1} est une base de V.

e g(upt1) < 0 (c’est possible car V' contient un tel vecteur)

e La derniére coordonnée de u, 11 est positive (quitte a changer u, 11 en —uy41,

ce qui ne change pas le signe de q(up+1)).

Puis on applique a la base {u1, -+ ,up+1} un procédé de Gram-Schmidt pour la
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Figure 1.6: Les géodésiques du demi-espace

forme quadratique ¢ (i.e on g-orthonormalise la base). En effet, on pose

Un+1
Wpi1 = ———
vV~ Un+1 - Un41
de sorte que q(wyn41) = —1. Puis soit v, = uy + (Up, - Wpt1) W1 Alors v, # 0 et,

puisque vy, * Wp41 = Up  Wp41 — Up - Wpt+1 = 0, on sait (par Sylvester) que g(vy,) > 0.

Et donc on peut poser
Un

Vv Un “Un

Wy, =

Et on continue...

On note que V' = Rwy+1 ®Rw,. La matrice constituée des vecteurs w; en colonnes
est dans O(n, 1) car elle envoie la base canonique qui est Lorentz-orthonormée sur la
base des w; qui est aussi Lorentz-orthonormée. De plus, elle préserve I’hyperboloide
car la derniére coordonnée de wy,+1 est positive. O

De ce lemme, on déduit que toute courbe qui est 'intersection de d’un plan avec
H™ est géodésique. Pour la réciproque, il existe deux stratégies : la premiére est
rédigée sous forme d’exercice ref . La seconde consiste & utiliser un argument
riemannien : une géodésique ~y est uniquement déterminée par y(tg) et +'(to) : elle
est donc contenue dans le plan engendrée par ces deux vecteurs.

Remarque Les géodésiques de H"™ sont des branches d’hyperboloide, elles sont
paramétrées par y(t) = costx +sinhtX ou y(0) =z (z-x = —1) et 7/(0) = X.

4. Pour le modéle de Klein K", c’est maintenant évident puisque la projection pro-
jective envoie plans sur droites
2. Cela provient de la combinaison des deux faits

e Isom(B™) = Mob(B") et

e Mob(B") est transitif sur les droites et cercles orthogonaux au bord.

3. Il suffit d’utiliser le fait que 'isométrie entre U™ et B™ est une inversion.
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1.3.3 Bord a l’infini de ’espace hyperbolique

A revoir
Soit 7 : R — P(R) la projection canonique. On rappelle que K™ = 7({g < 0}).

Définition 1.3.15. Le bord de H", noté OH" est m({q = 0}).

Proposition 1.3.16. 1. Le bord de H" est difféomorphe a une sphére euclidienne
St=b et H* US™ ! est difféeomorphe a une boule fermée, dans chacun des modéles.

2. Toute isométrie de H" s’étend contintdment ¢ OH"™.

3. Pour f € Isom(H") (étendue au bord en f), si f agit trivialement sur le bord, alors
f est triviale.

Preuve: 1. C’est un point subtil et il faut bien prendre soin de préciser les différentes
topologies.
O

Remarque Sur le modéle du 1/2 plan.

La géométrie qui se dépose au bord est la géométrie conforme.

1.3.4 Classification individuelle des isométries

Théoréme 1.3.17. Soit f € Isom(H"™. Alors, on est dans un et un seul des cas suivants

1. f admet (au moins) un point fize dans H" : f est dite de type elliptique.
2. f admet un unique point fize qui au bord de H™ : f est dite de type parabolique.

3. f n’a pas de point fize dans H" et a exactement deux points fizes dans OH™ : f est
dite de type hyperbolique ou loxodromique.

Preuve: On procéde en deux étapes :

Etape 1 : f admet toujours au moins un point fixe dans H" U 0H".

On pourrait appliquer directement le théoréme de Brouwer (toute application con-
tinue de la boule dans la boule admet un point fixe) mais on préfére un raisonnement
direct.

Lemme 1.3.18. Soit ¢ € O(n,1). Alors il existe une droite A de R™ ! qui est soit
négative, soit isotrope et qui est stable par .

Preuve: On procéde par récurrence sur n > 1.

e n=1: RY! est un plan hyperbolique (au sens des espaces quadratiques) et on en
connait ses isométries : si elle est directe, alors

_f(a O
SO_O%

et la droite Rey est stable et négative. Si elle est indirecte, c’est une réflexion par
rapport & une droit A. donc A et AL sont stables et 'une des deux est négative
par Sylvester.
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e Supposons le résultat vérifié pour toutes les dimensions inférieures & n —1. Comme
toute matrice réelle, ¢ admet une droite stable ou un plan stable. Supposons déja
que ¢ admette une droite stable A. Si A est négative ou nulle, ¢’est bon. On peut
donc supposer que A est positive. On a donc R™! = A@ AL et AL est stable. Par
Sylvester, A+ est de type (n — 1,1). On lui applique ’hypothése de récurrence.

Supposons maintenant que ¢ admette un plan stable P. Alors, P ne peut étre que
de trois types : de type (+,+) (auquel cas son orthogonal est de signature (n—2,1)
et on applique I'hypothése de récurrence, (+, —) (auquel cas on est ramené an = 1)
ou (0,+) (auquel cas le radical est stable). En effet, puisque l'indice de Witt est
1, les types (0,0) et (0, —) sont impossibles.

O

Etape 2 : Si f fixe trois points distincts au bord de H", alors f a des points fixes
dans H".

Soit donc ¢ € O(n, 1) qui admet trois droites isotropes stables par ¢ : ¢(D;) = D;
pour i = 1,2,3. Soit W =Vect(D;, Ds, D3). Alors W est de dimension 3 car il ne
peut y avoir trois droites isotropes dans un plan d’un espace de Lorentz (voir plus
haut, toujours car l'indice de Witt est 1). De plus ¢ induit une isométrie de W car
les droites sont stables. Pour i # j, Vect(D;, D;) est un plan (+,—) car il a deux
droites isotropes. Posons Ay = Ruy, =Vect(D;, Dj)* (Porthogonal est bien de dimension
1 car Vect(D;, D;) est défini). On déduit du fait que W est de type (+ + —) (seule
possibilités pour avoir plus de deux droites isotropes), que g(ux) = 1. Maintenant, on a
D3 =Vect(A, Ag)* (en effet (A, Ag)t = A{ N Ay =Vect(Dy, D3)NVect(Dy, D3) = Ds).
De plus, D3 CVect(A1,Ag) sinon W =Vect(Ay, Ay) serait (+,0,—). On en déduit que
P|Vect(A1,A,) €St une homothétie car elle a trois droites stables (et méme ¢ = +id mais
c’est inutile pour la suite). Donc ¢ fixe toutes les droites et en particulier les droite
négatives. O

Remarque Le type d’une isométrie ne dépend que de la classe de conjugaison. En effet,
si on note Fix(f) = {z € H" UOH", f(x) = z}, alors, pour g € Isom(H"),

Fix(9fg™") = g (Fix(f)).

Proposition 1.3.19. Il eziste des isomélries des trois types (sin > 2).

Preuve: e elliptique : dans le modéle de 'hyperboloide, on prend ¢ € O, (R) et
P& + tensn) = o) + tensr.

C’est une isométrie de H” qui fixe epq1.

Remarque On a déja constaté que toute isométrie elliptique est conjuguée & une
telle isométrie (car Isom(H"™) est transitif).

e parabolique : dans le modéle du 1/2 espace, soit

fur — u"
xr +— x+4+a

avec a € R"! (i.e f est une translation le long d’une direction paralléle a I’hyperplan
de bord). On vérifie facilement que f est une isométrie avec les formules pour la
distance. Et Fix(f) = {oo}. Plus généralement, si ¢ est une isométrie affine de
R™~! sans point fixe, on peut poser f(z' + zpen) = @(2') + Tnen.
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e hyperbolique : dans le modeéle du 1/2 espace et avec A > 0, on pose

f:u — u"
Tz — Ar

Alors Fix(f) = {0,00}. Plus généralement, si ¢ € O,_1(R), on prend f(z' +

Tnen) = A (@) + zpep).
O

1.4 Quelques précisions supplémentaires en dimensions 2 et
3
1.4.1 Géométrie du plan hyperbolique

On se place dans le modéle du 1/2-plan Y? = H? = {z =z + iy, y > 0} C C.
On considére le groupe de matrices

a b . -
SLo(R) = {(c d> ot ad — be = 1} .

Proposition 1.4.1. Le groupe SLy(R) agit sur H? par

a b az+b

cz= .

c d cz+d
C’est une action par isométries, qui se factorise en une action de PSLy(R) =SLy(R)/{£12}.
Elle préserve orientation.

Preuve: 1. Vérifions déja que H? est stable. En effet,
az+b ad — bc Sz
Ry ( + ) = 532 = ——5 >0
cz+d lcz + d| lcz + d|
2. Vérifions ensuite que c’est une action par isométries. Notons f(z) = Z'Zzig On

remarque que f est holomorphe sur H? donc que d.f - u = f'(2)u. Par ailleurs, si
u et v sont deux nombres complexes, (u,v) = R(uv). Ainsi

= R(f'(2)uf'(2)v) uw__ lcz + d|4 =

SFQE  Jerdt Sr e

<dzf " u, dzf ’ v>f(z)

3. Pour obtenir une action de PSLy(R), on constate que le sous-groupe {£1} est le
noyau de ’action et on applique le théoréme de factorisation.

4. Toute application holomorphe préserve l'orientation (conditions de Cauchy-Riemann).
O

On veut maintenant montrer que PSLa(R) est exactement le groupe des isométries
directes. Comme d’habitude, on commence par montrer que ce groupe est suffisamment
transitif.

Lemme 1.4.2. Le groupe PSLy(R) est transitif sur les droites et cercles orthogonauz au
bord (i.e les géodésiques).

Preuve: On cherche & tout ramener sur 'axe imaginaire. Si L est une droite verticale
d’abscisse xg, alors z — 2z — x¢ convient. Si L est un cercle euclidien orthogonal a R et
qui rencontre l'axe réel en «, alors z — % + B avec B a ajuster convient. O
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Théoréme 1.4.3. Le groupe Isom(H?) est engendré par les homographies et application
z — —Zz. Il est isomorphe a

PSL;(R):{C Z) oaad—bc:il}/{j:.fg}.

Le sous-groupe PSLs(R) est d’indice 2 et constitue les transformations qui préservent
lorientation.

Preuve: Soit ¢ une isométrie de H2. On note I 'axe imaginaire. Puisque ¢ envoie
géodésiques sur géodésiques, ¢(I) est une géodésique. D’aprés le lemme précédent, il
existe g €PSLa(R) tel que g envoie ¢(I) sur I. On peut donc supposer que ¢ fixe
globalement I. Puis, quitte & appliquer une transformation de la forme z +— kz, on
peut supposer que ¢ fixe ¢ € I. Enfin, en appliquant encore au besoin z — _71, on peut
supposer que ¢ stabilise les deux demi axes (ico) et (0,4). Puisque ¢ est une isométrie,
on conclut que ¢ fixe chaque point de I. A partir de maintenant, il s’agit de montrer que
¢ est soit 'identité, soit la réflexion par rapport a I. Posons z = z + iy et ¢(z) = u+iv.
Pour ¢t > 0, on a
d(z,it) = d(p(z), p(it)) = d(u + v, it).

Puis, en passant au cosh,

.12 . 2
—at —t
B N U )
2yt 2ut
D’on,
2+ (y—t)? i+ (v—t)?
Y v
et
2+ (y—t)Pv=1u’+ (v—1)%y
ou encore
24+ (y—t)?v w4 (v—1t)%y
12 B t2 '
Faisant tendre ¢ vers oo, il reste v = ¥, puis facilement, 2 = 2. On a donc ¢(z) = 2
ou ¢(z) = —Z. Les isométries sont lisses (en particulier continues) donc une des deux
formules est vraie pour tout z. O

Remarque On obtient en particulier un isomorphisme de groupe (dit isomorphisme
exceptionnel) PSLy(R) ~ O°(2,1).

Le lemme suivant sera souvent utilisé par la suite.

Lemme 1.4.4. Le groupe PSLy(R) est 2 fois transitif sur le bord.

Preuve: On utilise le modéle du 1/2 plan, pour lequel le bord est la droite projective
réel. L’action de PSLa(R) sur le bord est I'action projective usuelle. Soit alors x; et o
deux points distincts du bord RU{oco}. On peut connecter ces deux points a 0 et oo par

zZ— 1 1

fz) =

Z2—To T1—Ty



CHAPTER 1. LA GEOMETRIE HYPERBOLIQUE 28

Retour a la classification des isométries
Voici un autre critére de classification des isométries selon les trois types qui utilise
la représentation des isométries sous forme de matrice de PSLa(R).

Proposition 1.4.5. Soit v € PSLy(R) = Isom(H?), v # 1. Alors,
o Sitrace?y < 4, alors « est elliptique.
o Sitrace?y =4, alors 7 est parabolique.
o Sitrace?y > 4, alors «y est hyperbolique.

Noter que v admet deux représentants dans SLa(R) : A et —A et on pose
trace’ v = (trace A)?

(tracey n’est pas définie). On aurait aussi pu discuter selon [tracey|.

Preuve: C’est élémentaire, on pose

az+b [a b
=210 (1)) esl®

L’équation y(z) = z est équivalente & cz? + (d — a)z — b = 0 dont le discriminant est
A = trace? y — 4. O

Classes de conjugaison
Une des applications possibles de la géométrie hyperbolique est de trouver les classes
de conjugaison dans le groupe PSLa(R).

Proposition 1.4.6. Soit v € PSLy(R), v # 1.

. . cos?  sin?
1. Si |tracey| < 2, alors v est conjuguée dans PSLa(R) a v9 = . 2 2
— Sln 5 COS b)

(géométriquement, une rotation d’angle 6 autour de z = i. Et vy est conjugué a
~Yor si et seulement si 0 = 0’ [27].

2. Si |tracey| = 2, alors v est conjuguée dans PSLa(R) a (é D ou <(1) _11>

A 0
3. Siltracey| > 2, alors v est conjuguée dans PSLa(R) a vy = \Of 1 |, A#L
cos s

Et vy est conjuguée a vy, si et seulement si X = ji ou A = i

Preuve: 1. Le résultat est déja connu : conjuguer sert & changer le point fixé puis

Stab;(SLg) =SO3 et donc Stab;(PSLg) =PSO2 ~SOs.

2. On peut supposer y(00) = oo dans le modéle du 1/2 plan. Alors vy(z) = z + b car
tracey = 2|. Si b > 0, soit ¢(z) = f;onapoyoy H(z) =2+ 1. Sib<0, alors
¥(z) = % convient. On note maintenant t¥(z) = z + z £ 1 et on montre (par
I'absurde) que t* et ¢~ ne sont pas conjuguées. Supposons donc qu'il existe 1 telle
que Yttyp~t =t~. Alors 1 fixe nécessairement l'infini et 1(2) = az + b avec a > 0.
Un calcul explicite donne 1 oy o¢~1(2) = 2 + a.

Remarque Les deux applications paraboliques ¢ et t~ sont en fait conjuguées
dans Isom(H?) par o(z) = —Z.
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3. On peut supposer que 7(0) = 0 et y(co) = oo (lemme 1.4.4). Alors y(z) = Az,
A >0, A # 1. Si v, est conjuguée a -, alors

1

trace® vy = A
race” yy +)\

1
+2:,u—|—f—i—2:trace27#.
1
Soit f(z) = % On vérifie bien que, si y? > 4, alors y a deux antécédents par f.

On en déduit bien que A = g ou A = i D’ailleurs, v, et v 1 sont conjuguées par
o(z) =-1.

O]

On montre enfin un dernier théoréme de classification qui utilise comme critére la
distance de déplacement.

Définition 1.4.7. Soit (X,d) un espace métrique et soit v € Isom(X). On appelle
distance de déplacement et on note d, la quantité

dy = xlg)f( d(z,~yx).
Par exemple, si v a un point fixe, alors d, = 0.
Voila le critére de classification.
Proposition 1.4.8. Soit v € Isom(H?). Alors
1. Sidy =0 et sidy est atteint, alors v est elliptique.
2. Sidy =0 mais que d, n’est pas atteint, alors v est parabolique.
3. Sidy >0, alors 7y est hyperbolique.

Pour démontrer ce critére (en particulier que d, = 0 uniquement dans le cas parabolique
ou elliptique), on utilise les informations suivantes sur les transformations hyperboliques.

Proposition 1.4.9. Soit v € PSLy(R) une isométrie hyperbolique. Alors,

1. 1l existe une unique géodésique A fize par v et on dit que A est 'axe de la trans-
formation hyperbolique .

2. Plus les points sont loin de l'aze, plus ils sont déplacés par . Précisément, pour

z € H?,
d(ZﬁZ))

sinh (?) coshd(z, A) = sinh < 5

3. En particulier, d, > 0 et d(z,vz) = d si et seulement si z € A.
Montrons déja cette seconde proposition.

Preuve: Soit « et § les points fixes de 7 et soit A = («a, ) la géodésique d’extrémités
a et 5. Alors A est fixe par v puisqu'une géodésique est uniquement déterminée par
ses deux extrémités. Soit maintenant B une autre géodésique fixe par v Alors B(oo) et
B(—00) sont fixes par 72 et on sait que les points fixes de 72 sont exactement o et 3.
Donc A = B comme lieux géométriques.

Pour la formule de la distance a I’axe, on peut supposer que 7(z) = Az, quitte a
conjuguer, ce qui ne change pas les données du probléme. L’axe de v est donc la demi-
droite de H?, Rz = 0. On utilise la formule de la distance
|z — w|®

hd =1 .
coshd(z,w) + 5525w
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\/

Figure 1.7: La situation

Soit donc z € H?; il existe un unique angle 6 € ]0, [ tel que z est sur la demi-droite
qui forme an angle 6 avec I’axe des abscisses, disons z = ye?. Alors

coshd(z, A) = coshd(ye', iy).

En effet la droite d’angle 6 et la géodésique passant par iy et ye? sont orthogonales (un
cercle est orthogonal & chacun de ses rayons). Donc le point iy est bien le projeté de
ye'? sur Paxe de 7. Puis
ye' —iy|”
coshd(z,A) = 1+ 7‘ Sy sin 0‘
e~
2sin 6
2 — 2R (ie™")
~ 2sinf
1-R (ei(%_9)>
sin 6
1 — cos (g — 9)
sin 6
1—siné
sin 6

= 1+

= 1+

= 14

= 1+

= 14
1

sin 6

Gardons ¢a en téte. On vérifie ensuite, en utilisant la méme formule pour la distance
que

(A-1)?

2sin? 6

On constate déja que coshd(z,\z) est minimale lorsque siné est maximal, c’est-a-dire

coshd(z,A\z) =1+

0 = 7, i.e z est sur I'axe ! Ainsi d, = [ = In X (la distance hyperbolique entre i et \i).
On obtient aussi en particulier que
A —1)?
coshd, =1+ u

2
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Enfin, en utilisant Iidentité cosh X = 1 + sinh? %, on trouve d’une part

—1)2 -1
sinh? (d'y> = u donc sinh <d7> = )\7
2 2 2 V2

et d’autre part

sinh (d(z,’yz)) _ A—1 .
2 V2sin 6

On en déduit facilement la formule. O

On peut maintenant démontrer la classification des isométries selon la distance de
déplacement :

Preuve: 1. Sid, =0 et dy est atteint, alors v a un point fixe et c’est une isométrie
elliptique.

2. Grace a la proposition précédente, on sait maintenant que si d, = 0 et d., n’est pas
atteint, alors v est parabolique.

3. Inversement, si v est parabolique, alors v est conjuguée & z — z+1. Prenons, pour
z fixé, la courbe ¢(t) = z 4+ t. Alors
1
dt 1
d(z,z+1) <L(c) = —=—=0.

0o Sz Sz

1.4.2 Géométrie hyperbolique en dimension 3

Les preuves des énoncés de cette section sont rédigés sous forme d’exercices corrigés.
On donne ici sans preuve les principaux résultats. Le plus important donne une autre
description du groupe des isométries.

Théoréme 1.4.10. On a les isomorphismes
Isom™ (H?) = 0°(3,1) = PSLy(C).

La preuve constitue I'exercice ref mais on donne ici quelques explications.

Commentaires

1. L’identification Isom™(H?) =SLy(R) peut sembler plus naturelle que celle de
Isom™ (H?3) avec PSLy(C) puisque SLy(R) agit naturellement sur un espace de dimension
réelle 2. L’explication passe en vérité par le bord. On a déja vu, en toutes dimensions,
qu’une isométrie est caractérisée par son action au bord, via I'extension de Poincaré
et que la géométrie qui se dépose sur la sphére & infini de I'espace hyperbolique est
la géométrie conforme. On peut alors montrer, comme on ’a fait en dimension 2, que
SL2(C) est le groupe conforme de la sphére S = JH?. Dans ce contexte, il est en fait
plus convenable de penser & la sphére S? comme 4 la droite projective complexe P(C) sur
laquelle SL2(C) agit naturellement (nous verrons que ’action d’une isométrie a I'infini
est justement ’action projective).

2. Nous présentons en exercice une autre approche, que 'on résume de la fagon

Lz{(c—l b), beC, a,cER}.
b ¢

suivante. Soit
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Figure 1.8: Dynamique des isométries hyperboliques

C’est un R-espace vectoriel de dimension 4 (I’espace des formes hermitiennes sur C?).

D’autre part
a b o 2 .
— det (b c) = |b|” — ac

de sorte que (L, — det) est un espace de Lorentz (de type (3,1). Donc
H3={AecL, detA=1}

est le modéle de I’hyperboloide de H3. L’action de SLa(C) est maintenant naturelle (par
changement de base de la forme quadratique) :

SLo(C) x H? — H3
(P, A) — PA'P

C’est bien str une action par isométrie pour — det. Il s’agit de montrer que ’on a toutes
les isométries.

g3
p-



CHAPTER 1. LA GEOMETRIE HYPERBOLIQUE 33

Proposition 1.4.11. On a une suite exacte de groupes
1 — {#1} — SLy(C) — Isom™ (H?) — 1.

Donc Isom™ (H?) =SLy(C)/ {41} =PSLy(C).
3. On peut enfin expliciter 'action des isométries sur les autres modéles. Le plus
simple est de constater que l'on a une isométrie

Cx10,00[=U®> — H3
2 2
. +1t° z
¢ 1 (12l
z+1) — < 5 1
De cette isométrie, on déduit une action de PSLy(C) sur 43 donnée par

o (az+PB)(vz+0) +ayt? +tj
<a g).(z—{—t]): >( 2) 55 .
v vz + 6"+ ||t

Bien que peu utilisée & cause de sa complexité, cette formule montre en tout cas que
SL2(C) agit bien projectivement au bord.

4. Une autre méthode aurait constitué a appliquer une formule explicite de I’extension
de Poincaré (Beardon ).

1.5 Exercices corrigés pour le chapitre 1

Enoncés des exercices

Exercice 1.1 (Formules pour la distance)
On note || - || la distance euclidienne. Montrer que

1. pour tout u,v € B™ on a

fu—el? o) = v

coshd(u,v) = 1+ =
(L= flul®)(X = o)) 2 (1= 2(u,v) + ||ul|2 + HUHQ)%

)

2. pour tout x,y € U™ on a

1
=

coshd(x,y) = 1+
(@9) 2Tp41Ynt1 2 |2 =y [I> + (Zn41 + Ynt1)?

ouxr = (xlaxn-‘rl) et Y= (ylayn+1)7

Exercice 1.2 (Modéle de Klein de la géométrie hyperbolique)

On considére la boule unité B™ munie de la métrique construite comme suit: pour
u,v € B™, soient a,b € OB" = S™! les deux points du bord de B" tels que a,u,v et
b se trouvent sur la méme droite, et |ja — v|| > |la — u|| et ||b — u|| > ||b — v|| (faire un
dessin). On définit alors la fonction suivante sur B™:

1 la —v|[]|b — ul 1
Mwwzl%<=1%@%wW-
2 la —ullllb=2l/ 2
1. Montrer que le modéle de la boule unité (B™, d) et de Klein (B™, dk ) sont isométriques,
ou d est donnée explicitement par le point (a) du premier exercice.
Indication: Un bon moyen de passer d’'un modéle & 'autre est de faire une étape
par ’hyperboloide.

2. Demander & l’assistant pourquoi ce modéle est le méme que le modéle projectif
défini en cours.
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Exercice 1.3 (Autour de I’hyperboloide)
On rappelle que la métrique d sur H* C R**! est définie par

coshd(z,y) = —x-y = —% (g(z+y) —q(z) —q(y)),

avec ¢ la forme quadratique définie par ¢(x) = x% +... 22— xiﬂ.

1. Supposons que n = 2 et soient z,y € R? et

1 0 0
J=10 1 0
0 0 -1

On définit le produit vectoriel lorentzien de x et y par z @ y := J(x X y), ol X est
le produit vectoriel euclidien. Montrer que pour tout w, z, vy, z € R3

(a) z-(x®y) =y (r®y)=0. On dit dans que = ® y est Lorentz-orthogonal &

x et y.
(b) z@y=-yxx
T T2 3
(c) (z®@y)-z= |y Y2 Y3
z1 Z9 z3

(d) z0y®z)=(r-y)z— (2 )y

© @oy)-ow=|"" o

2. On suppose toujours que n = 2, mais maintenant z,y € H". Montrer que ||z ®
y||? = sinhd(z,y).

3. En utilisant le fait que Oy est transitif sur Vect(z, y, z) pour tout z,y, z € H" ainsi
que les points précédents, montrer que d satisfait 'inégalité du triangle.

4. (Sera utilisé au cours) On dit que trois points x,y, z € H" sont hyperboliquement
colinéaires s’il existe un plan vectoriel contenant xz,y et z. Montrer que si trois
points x,y, z € H" vérifient

d(l‘, y) + d(yv Z) = d(x7 Z)a

alors ces trois points sont hyperboliquement colinéaires.

Exercice 1.4 (Le théoréme de Sylvester)

Soit @ : R” — R une forme quadratique réelle sur R", i.e. un polynéme réel homogéne
de degré deux. On définit l’indice de ¢ comme étant la dimension maximale d’un sous-
espace vectoriel V' de R™ tel que Q(z) < 0 pour tout € V'\ {0}. Si ¢ est l'indice de Q
et p est la dimension maximale d’un sous-espace W de R™ tel que Q(x) > 0 pour tout
x € W\ {0}, alors on appelle le couple (p, q) la signature de Q. Les vecteurs x € R™ tels
que Q(z) = 0 sont appelés isotropes. Observer que

B(z,y) = 5 (Q +) ~ Q) ~ Q)

définit une forme bilinéaire symétrique sur R", appelée la forme polaire de Q.
1. Montrer qu’il existe une base (eq,...,e,) de R™ tel que

(a) B(es,ej) =0 pour tout i # j,
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(b) B(ei,e;) # 0 pour tout 1 < i <r =rang(B),
(¢) B(e;,e;) =0 pour tout r < i <n,

une telle base est dite orthogonale pour Q.

2. Montrer le théoréme de Sylvester: pour toute base (eq, ..., e,) orthogonale pour @
on a

p=#{i|Qei) >0} et ¢q=#{i| Q&) <0}.

3. Dans le cas particulier de R™! vu au cours la semaine passée, montrer que si
W C R™ est un sous-espace vectoriel de dimension m, alors les seules signatures
possibles pour la restriction de ¢ & W sont (m,0), (m —1,1) ou (m — 1,0).

4. Montrer que si x,y € H", alors la restriction de ¢ a Vect(z,y) est de signature
(1,1).
Exercice 1.5 (Sphéres hyperboliques)
On note Sp(b,r) la sphére hyperbolique de centre b € B™ et de rayon r > 0, i.e.
Sp(b,r) ={xz € B" |dg(b,z) =r}.

Montrer qu’un sous-ensemble S C B"™ est une sphére hyperbolique si et seulement si S
est une sphére euclidienne de E™ contenue dans B™.
Indication: L’application 7, définie au cours la semaine passée pourrait étre utile.

Exercice 1.6 (Gauss-Bonnet hyperbolique) Dans cet exercice, on introduit
la notion wvolume hyperbolique. On définit le volume hyperbolique d’'un sous-ensemble

A C U? par
dxdy
u(A):Z/A 5

Y
si cette intégrale existe. L’expression dﬂ;;ly est appelé élément de surface hyperbolique.

Un polygone hyperbolique a n cotés est un sous-ensemble fermé de U? U {oo} borné
par n segments géodésiques (pour la distance hyperbolique). Si deux de ces segments
s’intersectent, on appelle leur intersection un sommet du polygone. Remarquons que
bien que des sommets puissent se trouver dans AU? U {oo}, aucun segment géodésique
ne peut se trouver dans OU?.

Soit T un triangle hyperbolique (un polygone hyperbolique & 3 cotés) dans U?, d’angles
intérieurs a, 8 et . En supposant que PSLa(R) C Isom(U?) = M(U?) (on montrera
ceci dans la suite du cours), montrer que

wT)=m—a—=pF-n.

Indication: Faire d’abord le cas ou un ou plusieurs des sommets du triangle se trouve(nt)
dans OU? U {oo}. Ensuite, se ramener & ce cas et utiliser la transitivité de 'action du
groupe d’isométries sur le bord a I'infini.

Exercice 1.7 Trigonométrie hyperbolique.

1. On se place dans le modeéle du disque hyperbolique ou du 1/2 plan. La mesure de
'angle hyperbolique entre deux vecteurs u et v de T,H? est donnée par

cos £ (u,v) = S WU Zhyp
[l pyp [0/l

Un angle hyperbolique entre deux segments géodésique qui s’intersectent au point z

est par définition I’angle dans T,H? entre les deux vecteurs dérivés des géodésiques.

Montrer que cette notion d’angle est la méme chose que I'angle euclidien
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2. On considére un triangle hyperbolique T dont les cotés sont des segments géodésiques,
les angles aux sommets sont des nombres strictement positifs «, 8 et v et les
longueurs des cotés opposés a, b et c. Prouver les trois lois de la trigonométrie
hyperbolique

(a) Loi du sinus
sinh a B sinh b B sinh ¢

sina sinB  siny’
(b) Premiére loi du cosinus

cosh ¢ = cosh a cosh b — sinh a sinh b cos 7.

(c) Deuxiéme loi du cosinus

cos acos 4 cosy
coshe = - - .
sin oz sin 8

3. Expliquer pourquoi la deuxiéme loi du cosinus n’a pas d’analogue en géométrie eu-
clidienne. Quels sont les paramétres dont on a besoin pour reconnaitre un triangle
hyperbolique & isométries prés 7 Comparer avec le cas euclidien.

Exercice 1.8 Sur la topologie de SLa(R).

1. Rappeler la définition d’une topologie quotient.

2. Montrer que SLy(R) est un groupe topologique (c’est-a-dire que les opérations de
groupe sont continues) et qu’il est homéomorphe & R? x S

3. (*) Comment peut-on analyser la topologie de SLy,(R) ?

Exercice 1.9 Sur la transitivité de PSLy(R) au bord du plan hyperbolique.

1. Montrer que I'action de PSLy(R) est deux fois transitive sur le bord de H2.

2. Que peut-on dire d’une isométrie de H? qui fixe trois points du bord.

Exercice 1.10 Les cercles hyperboliques sont des cercles euclidiens.
On se place dans le modéle du 1/2 plan. Montrer que tous les cercles hyperboliques
sont des cercles euclidiens (avec un centre et un rayon différent) et inversement.

Exercice 1.11 (Horosphéres dans les différents modéles)

On se place pour commencer dans le modéle de la boule conforme. Une horosphére
Y. de B™ basée en un point b € S"~! est I'intersection avec B" d’une sphére euclidienne
de B" tangente a S"! en b. En utilisant les isométries (désormais familiéres) B — U™
et B" — H"™, on définit une horosphére dans U™ (resp. dans H™) comme l'image d’une
horosphére dans B™ par I'une ou 'autre de ces isométries.

(a) Pour n = 2, dessiner des horocycles (i.e. des horosphéres en dimension 2) dans
B? U? et H?.

(b) Comparer la longueur hyperbolique d’un segment d’horocycle a la distance hyper-
bolique entre ses extremités et en déduire qu’il est ridicule de se déplacer le long
d’un horocycle.
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(e)

(a)

Exercice 1.12 (Un autre modéle de H?)
Compléter et détailler 'argument donné en cours établissant que Isom(H?) = PSLy(C).

Expliciter I’action de I’action de SLy(C) sur U3,

Pour une matrice y €SLy(C), on pose ||7]|* =tr(y'5). Montrer que ~ fixe j si et
seulement si ||y]|> = 2

Indication : En utilisant les formules pour la distance, montrer que ||v]|* = 2 cosh d(j, v(5)).

On s’intéresse enfin aux classes de conjugaison des éléments de PSLy(C).

(i) Soit 71 et 2 deux éléments de PSLo(C) différents de I'identité. Montrer que
71 et 2 sont conjugués dans PSLy(C) si et seulement si tr(y1)? = tr(v2)2.

(ii) Pour tout k # 1, on note
vk

(11
’71—01

Montrer que chaque élément v de PSLy(C) est conjugué a I'un des v ou a 1.
Puis quey, est conjugué a vy si et seulement si k = k' ou k = %

et

(iii) Montrer que 7y est parabolique si et seulement si v est conjugué a -1, que y est
elliptique si et seulement si v est conjugué a un 7, avec |k| = 1 et que 7 est
parabolique si et seulement si y est conjugué a i avec |k| # 1.

Soit vy un hyperbolique de PSLy(C). On dit que v est strictement hyperbolique
s'il existe un disque ouvert D de S? tel que (D) = D. Sinon on dit que 7 est
loxodromique. Montrer que

1. 7 est parabolique si et seulement si try? = 4.

2. v est elliptique si et seulement si try? € R et try? € [0, 4].

3. v est strictement hyperbolique si et seulement si try? € R et try? € |4, +o0].

4. v est loxodromique si et seulement si try? € C\(R N ]0, 4+o0] .

Exercice 1.13 (Les isométries de U?)

On regarde les éléments de (z,t) € U3 = C x R, comme des quaternions via
I’identification
(z,t) €U — u=2z+tj e H=C+Cj,

et on rappelle que jz = Zj pour z € C = R+ Ri C H. On définit ensuite une
application

SLy(C) x U — H*, (g, (2,t)) — (au + b)(cu +d) L,

otu=z+tjetg= (CCL Z) € SLy(C). Montrer que cette application définit

une action fidéle et transitive sur U? (il sera utile de calculer explicitement (z/,¢') =

g- (Za t))
Indication: Pour la transitivité, montrer que U? est I'orbite de j.
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(b) Montrer que SLa(C) est engendré par les éléments de la forme
a 0 1 b ot 0 -1
o L) \o 1) 1 0)

Isom™ (U?) = PSLy(C) = SLy(C)/{£1}.

(¢) Montrer que

Indication: Pour montrer qu'une isométrie de U? est dans PSLy(C) on se souvien-
dra du théoréme d’extension de Poincaré de la série 1.

Exercice 1.14 (Flot géodésique dans H?)

(a) On considére le fibré tangent unitaire de H?, i.e. on considére
T'H? = {(2,§) e TH* | ||¢]- = 1}.

Montrer que le groupe des isométries de H? agit sur le fibré tangent unitaire via

9-(2,8) > (g9-2,d.9(&)) = (g'z,m )

b : o :
avec g = <CCL d) € PSLy(R). Montrer que cette action est transitive, libre. En

déduire qu’il y a une identification PSLo(R) = T'H? et que I'on peut induire une
structure de groupe sur T H?.

(b) Montrer qu’étant donné un élément du fibré tangent (z,£) € TH?, il existe une
unique géodésique v : R — H? de l'espace hyperbolique telle que v(0) = z et
7(0) = €. Montrer de plus qu’on peut la choisir telle que [|§(t)|[y) = [[£][., pour
tout ¢t € R.

(c) Montrer qu’on a une action de R sur T'H? de la facon suivante:
Rx T'H* — TUH?, (t,(2,€) = (2.&),

ou zy = y(t) et & = (t), avec vy 'unique géodésique telle que v(0) = z, 4(0) = £ et
|7(¢)]] = 1 pour tout ¢ € R. La famille d’applications {y;}ier, ol

Ot - T1H2 — TIHQ, SDt(Z,g) = (Zbgt)a

est appelée flot géodésique.

et/? 0
A:{(O e_t/2>|teR},

montrer que le flot géodésique correspond au flot sur le groupe PSLy(R) donné par
multiplication & droite:

(d) En identifiant R a

A x PSLy(R) — PSLa(R), (g, 9) — 99t

et/? 0
gt = ( 0 et/?) :

Exercice 1.15 En dimension 2 et 3, décrire le plus précisément possible le stabil-
isateur d’'un point du bord de I'espace hyperbolique dans le groupe d’isométries.

ol
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Corrigés des exercices (ou référence)
Exercice 1.1

Exercice 1.2 Fixons d’abord les notations. Soit

¢: (B",d) — (H™d)

2 2un__ 14u?
g (= e e
et
v (H".d) — (B"dg)
T — (7x:.1~_1""’xii1>
La composée de ces deux applications vaut
2u
p(u) :=vo¢(u) = — 5,
1+ [Jull?

on constate donc que ¢ envoie les droites Vectorielles sur les droites vectorielles. Elle ne
fait que dilater le vecteur u d’un facteur 5 +”u”2 > 1 puisque [ju|| < 1. On veut montrer
que pour tout u,v € B"

d(u,v) = dr(p(u), p(v)).

Etant donnés u,v € B™ on sait qu’il existe une isométrie de (B™,d) qui envoie u sur
Porigine et v sur un multiple positif de e;. Par définition, cette isométrie est dans
PO(n,1) et comme les éléments de PO(n, 1) préservent le birapport, on en déduit que
PO(n,1) C Isom(dg). Ainsi Iisométrie de (B", d) considérée est aussi une isométrie de
(B™,dg). On en déduit que sans perte de généralité u = 0 et v = Aep, avec A > 0. On

a donc p(u) =0 et p(v) = li’kg e1. On a alors d’une part par un lemme du cours que

d(u,v) = 2arctanh|v|| = 2arctanh(\).

D’autre part, par définition de dg on a si a = —ej et b = e7 sont les points d’intersections
de la droite passant par ¢(u) =0 et p(v) = H))‘\Q e1 et de la boule unité:
1
dK(SO(u)v (p(U)) = 5 log[a, QO(U), @(U)a b]
1 — etllller =0
Lo (1= e = eerlller —ol
2 | —e1 —OHHel el
L 1+ A)?
= — 10 _—
2 ®\a -2

(1A
- 8\ )

Or, par une identité bien connue de trigonométrie hyperbolique (!) on sait que pour tout

€(—1,1) ,
2arctanh(z) = log <1 + Z) ,

—Z

ce qui termine la preuve.

Pour le dernier point de ’exercice, remarquer que ’application ¥ est la composée
de la projection de H" dans ’espace projectif, puis d’une carte affine. Puisque K™ est
totalement contenu dans I'ouvert de définition de la carte affine, il s’identifie & son image
B".
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Exercice 1.3
Exercice 1.4
Exercice 1.5

Exercice 1.6 La preuve s’articule en trois étapes.

(1) On montre d’abord que le volume hyperbolique est invariant sous 'action de PSLo(R).

(2) On montre le théoréme dans le cas ou I'un des sommets du triangle se trouve dans
oU?.

(3) On montre le théoréme dans le cas ot tous les sommets du triangle se trouvent dans
U? en se ramenant au cas précédent.

Etape 1: On écrit 'image de z € U2 = {z = x + 4y | y > 0} par un élément M €
PSL2(R) comme
b
M(z) = ﬂ, avec a,b,c,d€R, ad—bec=1.
cz+d

Ainsi, le jacobien de la transformation z = x + iy — M(z) = w = u + v est donné par

Ty - QLP0 w0 (ou)? o0\ |auP 1

MAE, Y ~ Oxdy Oydr \Oz ox) |dz| Jez+d¥
ol on a utilisé les équations de Cauchy-Riemann. Ainsi si A C U? est tel que u(A)
existe, alors

udav X (%4 4
) = [ W™ = [ o™ = [y — i,

Etape 2: On suppose que I'un des sommets du triangle T est dans OU? = RU {cc}. Si
ce sommet appartient a R, alors on peut I’envoyer, via une transformation M € PSLy(R)
sur le point {co} et ceci sans changer ni les angles ni le volume hyperbolique du triangle
puisque M est une transformation de Mobius et que ces derniéres sont conformes par
I’exercice 2 et qu’elles préservent le volume hyperbolique par 1’étape 1. Ainsi, deux
des arétes du triangles sont des géodésiques verticales et la troisiéme est un arc de cercle
centré sur I’axe réel. Quitte & appliquer des transformations de Mobius du type z — z+k
avec k € R, et/ou z — Az avec A > 0, on peut supposer que le cercle en question est
centré en 0 et est de rayon 1 (ces transformations envoient les géodésiques verticales sur
des géodésiques verticales donc l’angle nul a l'infini est préservé) comme montré a la
figure 1.9. Les géodésiques verticales passant respectivement par A et B sont données
respectivement par £ = a et x = b avec a,b € R. Ainsi

(T)_/dxdy / /ﬂ /m /ﬂaw:”o‘ﬁ‘

Remarquons que la technique utilisée pour cette étape marche tout aussi bien si deux
voire trois sommets sont dans U2 U {oo}; il suffit en effet d’utiliser un élément de
PSL2(R) pour envoyer un sommet sur le point {oo} puis de faire le méme raisonnement
aveca=0oua=L=0.

Etape 3: On suppose maintenant que les trois sommets du triangle T sont dans U?2.
L’idée est d’exprimer T' comme différence de deux triangles ayant au moins un sommet a
I'infini et ainsi de se ramener au cas précédent. Dans la figure 1.10, 'aire (hyperbolique)
du triangle T est la différence des aires des triangles T de sommets A,C et D, et T de
sommets B,C et D. Ainsi, si 6 est 'angle BCD on a

pT) =) —ph)=mr—a—-(+0)—[r—0—(r-p)=m—a-F-7.
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«

Figure 1.9: Le triangle avec un sommet en co

N

Figure 1.10: Le triangle avec tous les sommets dans U?

Exercice 1.7
Exercice 1.8
Exercice 1.9
Exercice 1.10
Exercice 1.11
Exercice 1.12
Exercice 1.13
Exercice 1.14

Exercice 1.15



Chapter 2

Interméde : Groupe fondamental et
revetements

Par convention, tous les espaces topologiques considérés seront des variétés topologiques.
On peut bien sir développer une théorie similaire dans un contexte plus général, voir
Hatcher et Paulin (& qui j’emprunte d’ailleurs beaucoup pour ces notes).

2.1 Groupe fondamental

Définition 2.1.1. Soit f et g deux application continues entre 2 variétés topologiques X
et Y. On dit que f est homotope a g et on note f ~ g s’il existe une application continue
H: X x[0,1] =Y telle que, pour tout z € X,

H(z,0)= f(z) et H(z,1)=g(x).

Si A C X est une sous-variété de X, on dit que f et g sont homotopes relativement
a A si de plus, pour tout a € A, Uapplication t — H(a,t) est constante (en particulier,
cela impose que f(a) = g(a) pour tout a € A).

Définition 2.1.2. Un espace X est dit contractile s’il est non vide et si idx est homotope
a une application constante.

Par exemple, si X est convexe, alors X est contractile (et se contracte sur n’importe
lequel de ses points). En effet, soit 9 € X, alors H(t,x) = tx + (1 — t)xo est une
homotopie de idx & l'application constante en xg.

Définition 2.1.3. Une variété X est dite simplement connezxe si X est conneze et si toute
application continue f :S' — X se prolonge en une application continue f : B> — X.

On montrera en exercice qu’une variété contractile est simplement connexe mais que
la réciproque est fausse.

Définition 2.1.4. Soit f : X — Y une application continue. On dit que c’est une
équivalence d’homotopie s’il existe une application continue g : Y — X telle que

e fogr~idy et
o go f ~idy
Dans ce cas, on dit que X et'Y ont le méme type d’homotopie.

Par exemple, dire qu'une variété X est contractile est équivalent a dire que X a le
type d’homotopie d’un point.

42
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Figure 2.1: Homotopies

Définition 2.1.5. Soit X une variété et A une sous-variété de X. On dit que X se
rétracte par déformations sur A s’il existe une application r : X — A telle que

o roij—=idy et
e ix or ~idy (ix est linjection de A dans X ).

Définition 2.1.6. Un chemin est une application continue « : [0,1] — X. L’origine de
a est a(0) et son extrémité est a(1). On dit de plus que o est un lacet si son origine est
égal a son extrémité. On note [a] la classe d’homotopie d’un chemin c.

Et enfin
Définition 2.1.7. Soit o et 5 deux chemins dans X tels que a(0) = 5(1).
o Le chemin inverse de o est le chemin noté a™' et défini par

a”l: [0,1] — X
t  — a(-t)’

e La concaténation de o et B est le chemin noté « - 5 (noter bien 'ordre des deux
chemins; la notation n’est pas compatible avec la convention de notation de la
composition des applications) défini par

a-p: [0,1] — X

a(2t) sit<1/2
b {ﬂ(Qt—l) sit>1/2

Théoréme 2.1.8. Soit X wune variété topologique; on note w1 (X, z) l’ensemble des
classes d’homotopies de lacets dans X d’origines x € X. La concaténation des chemins
donne a w1 (X, x) une structure de groupe. Si X est connexe, alors m(X,) et m1(X,y)
sont isomorphes pour tout couple (x,y) de points de X. On appelle l'un de ces groupes
le groupe fondamental de X
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La derniére assertion signifie que le groupe fondamental de X s’identifie & (X, x)
dés que 'on fixe un point base z € X.

@ ok %R
’rﬂ‘\@\) 1%/11( ’JM\'\Q Dwec WAJ\'\;J\,»:‘ ]L Sl/i%

Figure 2.2: La structure du groupe fondamental détecte les trous

Preuve: e Associativité : soit @ un chemin joignant = a y, 8 un chemin joignant
y & z et v un chemin joignant z a w. Il s’agit de montrer que (a-f) -y et a- (5 -7)
sont homotopes. Pour cela, on change contintiment les vitesses de parcours des
chemins

]

‘ "y// W
C’7 o V] \4)‘75‘(, l

Figure 2.3: Les chemins a- (3 -7) et (a - ) - v sont homotopes

Soit en effet 'homotopie H définie par

a(%) si0<t <
H(t,s)={ BAt—s—1) silks <2
o (742—5;2) sifF <t <1

e Elément neutre : On montre que la classe du lacet constant en z est ’élément
neutre ou méme plus généralement, que si « est un lacet joignant = & y et si c,
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et ¢, sont les lacets constants en x et y respectivement, alors ¢, - o et « - ¢y sont
homotopes. Pour cela, il suffit de montrer que « - ¢, est homotope & . L’idée est
de parcourir « de plus en plus lentement et de rester de moins en moins longtemps
sur y. En effet soit H 'homotopie

2t : 1
Hs < | o () o<ty
y siths <t <1

e Inverse : Voyons déja que la classe de ¢~! ne dépend pas du représentant ¢ de
[c]. Cela provient du fait que si (¢, s) — H(t,s) est une homotopie de o & 3, alors
(t,s) — H(1 —t,s) est une homotopie de a~! & 371. Pour montrer que ‘c‘l‘ est
I'inverse de |c|, on montre en fait plus généralement que si a joint z & y, alors a-a™ !
et o~ ! - o sont homotopes & ¢, et ¢y respectivement. Pour construire I’'homotopie,
I'idée est de passer un peu de temps sur x (de moins en moins), puis de parcourir
le chemin o« puis o' mais de s’arréter en cours de route et faire demi-tour de plus
en plus prés de x et enfin de rester sur x jusqu’a la fin du temps de parcours. En
effet, soit H I’homotopie

x si0<t<§

) a(2t-s) sis<t<s
Ht9) =Y a@-2i-s) sil<i<s
T 51%<t 1

Enfin, si X est connexe, alors X est connexe par arcs car X est une variété. Si a est
un chemin de x a y, alors
—1
o m (X, x)a =m(X,y)

avec les conventions de notation de la concaténation. O

Le groupe fondamental est construit pour donner des informations sur les classes
d’homotopies de variétés topologiques (c’est un foncteur de la catégorie des espaces
topologiques dans celle des groupes abéliens) :

Proposition 2.1.9. Soit f: X — Y une application continue.

e Sia et B sont deux chemins homotopes dans X, alors foa et fof sont homotopes
dans Y.

o Si f et g sont homotopes, alors m (Y, f(z)) et m1 (Y, g(x)) sont isomorphes.
e Si f est une équivalence d’homotopie, alors (X, z) ~ m (Y, f(x)).

Enfin, on montre que le groupe fondamental permet de détecter la simple connexité
de X.

Proposition 2.1.10. La classe || de « est triviale dans 71 (X, z) si et seulement si o
s’étend continiment en une application & : B2 — X. En particulier, m (X, z) = {1} si
et seulement si X est simplement conneze.

2.2 Revétements

2.2.1 Généralités

Définition 2.2.1. Soit X et B deuz variétés topologiques et f : X — B une application
continue. On dit que f est un revétement de X sur B si, pour tout b € B, il existe un
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voisinage V de b dans B, un sous-espace discret et non vide D de X et h : V x D —
7YV un homéomorphisme de sorte que le diagramme suivant commute

V x D—ls -4V

pry lf

V

Dans cette situation, la terminologie veut que l'on dise que B est la base du fibré, que
X en est lespace total, que f~'(y) est la fibre au-dessus de y, que V est un voisinage
distingué et que h est une trivialisation locale.

Le lecteur a peut-étre déja rencontré une notion assez proche. Si on remplace I'espace
discret D par un espace topologique quelconque F', on dit que f est un fibré localement
trivial. Si F' est un espace vectoriel (on dit alors que f est un fibré vectoriel), le cours
de géométrie différentielle se propose de construire plusieurs exemples (fibré tangent,
cotangent,...).

Exemple Soit
f: R — St
t —s 62i7rt
Montrons que f est un revétement. Pour tout z = €™ ¢ S!| soit V, = S' — {—z}.
Alors
FHV)=J10+ 2k = V), 0+ (2k + D).
keZ

et la restriction de f a chaque |0 + (2k — 1), 0 + (2k 4+ 1)x] est un homéomorphisme.

Figure 2.4: Enrouler R sur le cercle est un revétement



CHAPTER 2. INTERMEDE : GROUPE FONDAMENTAL ET REVETEMENTS 47

Définition 2.2.2. Soit f : X — B et f' : X' — B deux revétement de mémes bases.
Un morphisme de revétements de f sur f' est une application ¢ : X — X' qui envoie les
fibres de f sur celles de f', c’est-a-dire qui fait commuter le diagramme suivant

Nous verrons enfin en exercice qu'un revétement est un homéomorphisme local et
que la réciproque est trés souvent vraie.

2.2.2 Actions de groupes topologiques
Définition 2.2.3. Un groupe topologique G est un groupe muni d’une topologie telle que

GxG — G

(z,y) +— ay™

soit une application continue. Un morphisme de groupes topologiques est un morphisme
de groupes qui est une application continue.

Définition 2.2.4. Soit X une variété topologique et soit G un groupe topologique. Une
action continue de G sur X est une application continue G x X — X telle que, pour
tous g, g’ et tout x,

* g'(97) = (g'g)x et
* cr=x
Le graphe de laction est lapplication

gr: GxX — XxX
(9;2) +— (g, 2)

On dit qu’une action est propre si son application graphe est propre

Rappelons qu'une application continue est dite propre si l'image inverse de tout
compact est compact. caractérisation de Paulin.

Proposition 2.2.5. Une action est propre si et seulement si, pour tout compact K de
X, il y a peu d’élément de G qui déplacent peu K, c’est-a-dire que [’ensemble

{9e K, KNgK # 0}
est compact.

Lorsque G est discret (ce qui est souvent le cas dans la suite), cette condition est
équivalente au fait que {g € K, K NgK # 0} est fini.

Preuve: Supposons 'action propre et prenons un compact K de X. Alors K x K est
un compact de X x X, puis

g (K x K) = {(g,2), (9z,7) € K x K}
et compact, donc pry (gr_l(K X K)) aussi et
pry (gr '(K x K)) ={g € K, KNgK # 0}.

Inversement, si L est un compact de X x X, soit K un compact de X tel que L C
K x K (par exemple K =pri(L)Upry(L)). Alors gr (L) est un fermé contenu dans
{9 € K, KNgK # ()} x K qui est compact. Donc gr~1(L) est compact. O
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Définition 2.2.6. On dit que 'action est libre si l'application gr est injective, c’est-a-
dire, si pour tout x € X, son stabilisateur est trivial :

Gy = Stabg(z) :={g € G, gr =z} = {1}.

Théoréme 2.2.7. Soit G un groupe discret agissant librement et proprement sur une
variété séparée X. Alors

(i) Pour tout x € X, il existe un voisinage V de x tel que gV NV = () pour tout g # e.
(ii) Chagque orbite est discréte.

(iii) La projection canonique m : X — X /G est un revétement et le quotient X/G est
une variéte.

Preuve: (i) L’application gr est, par hypothése, continue, injective et fermée (car
propre). C’est donc un homéomorphisme sur son image. L’application gr envoie
{e} x X sur la diagonale et {e} x X est ouvert (car G est discret donc {e} est
ouvert). Donc la diagonale est un ouvert de Im gr. Soit donc 2 € X. Il existe un
ouvert V autour de x tel que V' x VN Im gr soit contenu dans la diagonale. Ensuite
gr}(V x V) C {e} x X donc gV NV est non vide uniquement lorsque g = e.

(ii) découle immédiatement de (i).

(iii) Soit V' comme dans (i). Alors U = 7(V') convient (c’est un ouvert distingué) pour
la définition de fibré et convient aussi pour fabriquer des cartes de X/G, quitte
a le rétrécir un peu. Il suffit en effet de prendre V suffisamment petit pour qu’il
soit contenu dans un ouvert de cartes. On construit ensuite des cartes de X/G en

utilisant le fait que U est homéomorphe a V.
O

Remarque On peut montrer aussi que I’espace des orbites X/G est séparé. A rédiger,
Godbillon p.29

2.2.3 Relévements

Soit p : X — B un revétement et soit f : ¥ — B une application continue. Un
relévement de f est une application continue f : Y — X telle que le diagramme suivant

commute
e
P

Y——2B
f
Un cas particulier et celui ou Y = [0,1]. On parle alors de relévement de chemins. Dans
ce contexte, on se pose les questions suivantes
1. f existe-t-elle et, si oui, est-elle unique ?
2. Deux chemins homotopes se relévent-ils en des chemins homotopes 7
Commencons tout de suite par ['unicité.

Proposition 2.2.8. Deux relévements qui coincident en un point sont identiques.
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Preuve: Soit donc f’ et f” deux relévements qui coincident en un point. On définit

Ag={ueY, fl(u)=f"(w)} et Ai={uec?, f(u)#f"(u)}

11 suffit de montrer que Ag et Ay sont ouverts puisque Ag est non vide par hypothése.
Soit u € Ag, U un ouvert distingué¢ autour de f(u) et h : U x D — p~1(U) la
trivialisation locale. Il existe d € D tel que f'(u) € h(U x {d}) = V. Alors f"~1(Vz) N
f"~Y(Vy) est un ouvert de Ay.
Soit maintenant u € A;. Alors il existe d' et d” tels que f'(u) € Vy et f"(u) € Vgn.
Puis /=1 (Vy) N f"~1(Vgr) est un ouvert de Aj. O

Remarque A la fin de cette preuve, nous montrons que le quotient X /G est une variété.
C’est en fait un phénoméne général. On aurait pu en effet, dans le définition méme d’un
revétement, supposer seulement que, soit l'espace total, soit la base est une variété et
le démontrer pour 'autre espace. Pour la base, c’est analogue a ce que l'on vient de
faire. Pour l'espace total, il suffit de prendre un point x dans X, de le projeté sur B,
de choisir autour de 7(z) un ouvert U qui est a la fois un ouvert de carte et un ouvert
trivialisant (en prenant 'intersection), et, puisqu’il existe autour de x un ouvert V qui
est homéomorphe & U, cela fournit une carte en x.

Chemins et homotopies

Proposition 2.2.9. Soit p : X — B un revétement et soit f : Y — B une application
continue (on suppose Y connexe) admettant un relévement f:Y — X. Pour toute
application continue h: Y x [0,1] — B telle que h(-,0) = f, il existe un relévement h de
h tel que h(-,0) = f.

Preuve: Le résultat est évident lorsque p est trivial car 'image de f est alors contenu
dans un ouvert de la forme B x {d}, homéomorphe & B. La suite de la preuve vise a con-
struire h en recollant des morceaux obtenus dans les trivialisations locales du revétement
(pour lesquelles la remarque précédente s’applique). On procéde en deux étapes : dans
un premier temps, on fixe y et on raisonne en découpant 'intervalle [0, 1] en morceaux.
Puis on recolle les différents h(Uy, x [0, 1]).

Premiére Etape : Soit y € Y. Il existe un entier ny et un voisinage U, de Y tel

que
,—1 1+ 1

(o [ 50)
Ty Ty

soit contenu dans un ouvert distingué V,,; de B, voisinage de h (y, ni) (on peut choisir
Y

n, par compacité de [0,1]). On veut maintenant relever h dans V, ;; 'ennui c’est que
ce relevé n’est pas unique. On procéde alors par récurrence sur ¢, par recollement et on

peut initialiser a l'aide du relevé de f. Soit donc gp un relévement de h‘U x[o 1 ] tel
_ vE Ly
que g(z,0) = f(z). Puis on construit g; par récurrence comme relevé de h‘U y [i,l i+l]
) v ny ' ny
) = gi—1(%, =) (on redémarre au méme endroit dans la fibre). Noter que
Y

A
M
ny

tel que g;(z

la construction est rendue possible car les ensembles U, X [Z;—l, 1;—1} s’intersectent. En
Y Y

recollant tous ces relevés, on obtient un relévement g, de hy, x[0,1) tel que gy, (z,0) = f(2).

Deuxiéme étape : Vérifions que 'on peut recoller les g,. Supposons donc qu’il
existe y # 3y tel que Uy N Uy # 0 et montrons que g, est compatible avec g, . Soit
z € Uy NU,. Par construction gy(z,0) = g, (2,0) = f(2). On a alors deux relévements
de Rz} x[o,1) qui coincident en un point : ils sont donc égaux ! Puisque z est quelconque,
on conclut que g, et g, coincident sur U, N U, x [0, 1]. O
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Corollaire 2.2.10. 1. (ezistence de relevés de chemins). Soit p : X — B un revéte-
ment. Pour tout chemin « : [0,1] — B d’origine b et tout x € p~1(b), il existe un
unique chemin & : [0,1] — X tel que a(0) =z et poa = a.

(Preuve : Un chemin est une homotopie entre deuz points.)

2. Si a et B sont homotopes dans B et si a(0) = 3(0), alors & et B sont homotopes
dans X.

3. Le morphisme p, : m1(X,x) = m(B,b) est injectif.

La derniére propriété signifie que le groupe fondamental diminue lorsque ’on "monte"
de B 4 X. C’est une propriété trés importante de la théorie des revétements : plus on
est haut, moins il y a de topologie. Trouver un revétement d’une variété B, c’est donc
trouver une fagon de "déplier" B pour en faire baisser la complexité topologique.

Théoréme 2.2.11 (du relévement). Soit p : X — B un revétement, Y une variété
connexe et f :' Y — B une application continue. Soit y € Y, b = f(y) et x € p~1(b).

Alors, il existe un relevement f (nécessairement unique) tel que f(y) = x si et seulement
St

fe(m(Y,y) =C pu(m1(X, 2))

La preuve de ce théoréme est rédigée comme exercice.

2.2.4 Action du groupe fondamental de la base sur la fibre
Soit p : X — B un revétement, b € B et F' = p~1(b) la fibre. Prenons [g] € m1(B,b) et
x € F. Il existe un unique relevé & de g dans X tel que a(0) = x, d’aprés ce qui précéde.
De plus la classe de a ne dépend que de la classe de g dans 71(B,b), i.e de [g]. On note
x-g = a(l). Puisque p(@(1)) = g(1) = b, on sait que @(1) € F et on vérifie facilement
que

m(B,b) x FF — F

(lgl,2)  +— -y

est une action (& droite).

Proposition 2.2.12. Le stabilisateur de x € F pour l'action de w1 (B,b) sur la fibre F
est py(m1(X, x)) (c’est-a-dire les lacets en bas qui proviennent de lacets en haut).

Preuve: C’est presque évident.

e Soit g € m1(B,b) qui fixe z. Alors son relevé est un lacet &. Puis p,(@) = g donc
Stab(z) C p«(m1 (X, 2)).

e Inversement, si g € (X, z) et si B est un représentant de g, alors /3 est le relevé
de p o 8 par unicité. Il fixe bien x.

O

Proposition 2.2.13. On suppose B connexe. L’application qui ¢ x € F associe sa
composante connexe dans X induit une bijection

F/m(B,b) ~ {composantes conneze de X} = mo(X).

Ce que dit cet énoncé, c’est que l'action de m1(B,b) sur la fibre permet de visiter
toute la composante connexe de x et ne permet pas d’en sortir.
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Figure 2.5: Action du groupe fondamental de la base sur la fibre

Preuve: e L’application F' — my(X) est surjective. En effet, soit y € X. Il existe
un chemin entre p(y) et b puisque B est connexe (et que connexe est équivalent a

connexe par arcs pour des variétés). Le relévement de ce chemin partant de y joint
ya F.

e On montre ensuite que x et =’ déterminent la méme composante connexe si et
seulement s’ils sont reliés par un relevé de m(B,b) (i.e 2’ = z - g). Ainsi, d’'une
part si 2’ = x - g, alors il existe un chemin de 2’ & x par définition de ’action.
D’autre part, s’il existe un chemin de o de 2’ & x, alors [p o a] convient (c’est bien
la classe d’un lacet).

O

Ainsi, si on suppose X connexe, on sait maintenant que laction de m(B,b) sur la
fibre est transitive. Ajoutant & cela, la description du stabilisateur, on obtient :

Corollaire 2.2.14. On suppose X connexe. Alors
F = Wl(B,b)/p*(T('l(X7 :Ij))
Puis, en particulier,

Corollaire 2.2.15. Si X est connexe, alors p est un homéomorphisme si et seulement si
px(m (X, x)) = 71(B,b) est un isomorphisme de groupes (on sait déja qu’il est injectif,
sa surjectivité aurait donc suffit).

Ainsi donc, pour deux variétés en situation de revétement, le groupe fondamental
détermine complétement la classe d’homéomorphie (en particulier, le type d’homotopie
et le type d’homéomorphie coincident).
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Corollaire 2.2.16. Un revétement connexe par arcs d’un espace simplement connexe
est un homéomorphisme

On ne peut donc pas monter plus haut qu'un espace simplement connexe.

Terminons ce paragraphe en présentant une méthode pour calculer des groupes fon-
damentaux de variétés. Supposons qu’'un groupe discret agisse proprement et librement
sur une variété simplement connexe X et soit B = G\X la variété quotient. Alors

71(B,b) = G. En effet, la fibre de p: X — X/G est G.

Exemple La variété R est simplement connexe (car contractile) et Z agit sur R pro-
prement et librement. Le quotient R/Z est homéomorphe au cercle S'. On obtient
donc

T (SY) = Z.

De méme pour les tores : m(T™) = Z"™ ou encore pour les espaces projectifs : puisque
S™ est simplement connexe et que S™ — S"/ {£1} est un revétement, on obtient

™ (P"*(R)) = Z/27Z.

2.2.5 Revétement universel

On sait maintenant que sip : X — B est un revétement, alors 71 (X) s’injecte dans w1 (B).
Par ailleurs si B est simplement connexe, tout revétement de B est un homéomorphisme.
Inversement, on montre dans cette section qu’il existe toujours un revétement simplement
connexe pour toute variété et que ce revétement revét tous les revétements de la variété.

Définition 2.2.17. Soit B une variété connexe. Un revétement universel de B est un
revétement @ : B — B d’espace totale B conneze et vérifiant la condition suivante : pour
tout revétement p : X — B avec X conneze et pour tous b € B et x tel que 7(b) = p(z),
il existe un morphisme de revétement ® : B — X tel que ®(b) = x.

Remarque 1. Le morphisme & est unique (car il est 'unique relevé de son projeté).

2. Un revétement universel est unique (en prendre deux et montrer que les applications
® correspondantes sont inverses 'une de lautre).

3. Un revétement simplement connexe est universel (d’aprés le théoréme du reléve-
ment).

Le théoréme suivant est délicat mais trés important.

Théoréme 2.2.18. Soit B une variété (séparée) connexe. Alors B admet un revétement
universel,

Preuve: Soit b € B et soit B I'ensemble des classes d’homotopies & extrémités fixées
de chemins dans B d’origines b. On a une application
7: B — B
6] — B(1)
Tout revient & vérifier que c’est un revétement universel.
L’application 7 est surjective car B est connexe par arcs. On munit B de la topologie

(quotient de la topologie) compacte ouverte. Il suit que 7 est continue. Le groupe
(discret) G = m1(B,b) agit sur B par

GxB — B
([, [8]) +— |- B
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Cette action est continue car 71 (B, b) est discret et libre car si [« - 8] = [f], alors [¢]
est la classe du lacet constant (procéder comme lorsque 'on montrait que le w1 est un
groupe). Les orbites de G sont exactement les fibres de 7 car on ne change pas I'extrémité
du chemin lorsque l'on fait agir G et si 7([3']) = 7([8]), alors 8’3~ € G. Donc 7 induit
par passage au quotient, une application f : G\B — B tel que le diagramme suivant
commute

B

et f est continue (par définition de la topologie quotient) et bijective (par le théoréme
de factorisation).

La stratégie de preuve devient maintenant claire. Il faut montrer que f est un
homéomorphisme et que p est un revétement. Pour ce dernier point, on utilise les critéres
généraux dans la situation d’'une action de groupes : il s’agit de voir que 'action est
propre et libre (ce qu'on a déja fait). Enfin, il faudra montrer que B est simplement
connexe, ce qui assurera que c’est un revétement universel.

On montre simultanément que ’action est propre et que f est un homéomorphisme.

Lemme 2.2.19. Pour tout [3] dans B, il existe un voisinage ouvert O = Oy de [B] tel
que

e Pour tout g € G, si O N gO est non vide, alors g = e.
e 7(0O) est ouvert dans B.

Preuve: Soit donc [5] dans B. Par compacité de [0, 1], il existe n € N et des ouverts
V; tels que

(i) Tout lacet dans V; est homotope au lacet constant (B est une variété donc locale-
ment R™, donc localement simplement connexe).

(i) 8 ([ 5] c Vi

Soit O’ louvert de I'espace des chemins dans B d’origines b formé des chemins 3’ tels
que B ([%, %]) C Vet (%) appartienne a la méme composante connexe par arcs que
15} (%) dans V;NV;_; (les composantes connexes par arcs sont ouvertes donc la condition
est ouverte). Soit ' et 8” dans O’ tels que /(1) = ”(1). Soit, pour tout 7 un chemin
v; dans V; N Vi1 joignant ' (L) a B” (L) (et 4o, yn constants). Pour simplifier (un peu)
les notations, on pose 3/ = /6|[%?7,-7{7—71] Soit ¢ le chemin

c=(v-80- 7" (B (1 By

Alors 8" ~c~ 3.

On conclut que deux chemins dans B suffisamment proches et ayant mémes ex-
trémités sont homotopes. Cela justifie de considérer O, ’ensemble des classes d’homotopie
de chemins de O’. Cet ensemble O est ouvert (car le saturé de O est égal a O" qui est
ouvert). Montrons que O convient. Soit g € G et [5], ["] € O tel que [3'] = g [B]. Alors
B'(1) = B"(1) et en fait [8'] = [8”]. Comme G agit librement, cela n’est possible que si
g = e. Enfin, il est clair que 7(0) = V,_1.

Lemme 2.2.20. L’application 7 est owverte, B est séparée, Uaction de G sur B est
propre et f est un homéomorphisme.

Preuve: e T est ouverte : c’est une application directe du lemme précédent.
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e B est séparée : Soit z et y dans B. Si 7(x) # 7(y), alors x et y ont des voisinages
distincts car B est séparée et 7 est continue. Si 7(x) = 7(y), alors il existe g € G
tel que y = gx. Donc O, et Oyx sont des voisinages distincts d’aprés le lemme
précédent (sauf si g = e, auquel cas = = y).

e L’action est propre : On rappelle qu'une application continue f : X — Y est
propre si et seulement si f est fermée et 'image réciproque d’un point est compacte.

On considére alors lapplication gr: G x B — B x B comme avant. L’image
réciproque d’un point est un point car I’action est libre. Pour la deuxiéme condition,
on commence par constater que G\B est séparé car f est continue et bijective et que
B est séparé (c’est comme pour montrer que B est séparé en utilisant la continuité
de 7). Donc la diagonale de G\B x G\B est fermée. Puis I'image de gr (qui est
(p x p)~H(A) ou p est la projection de B sur G\B et A la diagonale) est fermée.
D’autre part on peut expliciter Iapplication gr—' : c’est

gr-': Im(gr) — GxB

(81,1680 — ([#'87'],18)
et elle est continue. On conclut que gr est fermée.

e f est ouverte : On vient de voir que en particulier que p : B — G\B est un
revétement donc en particulier un homéomorphisme local et en tout cas ouverte.
Puisque 7 est continue, on en déduit que f est ouverte donc un homéomorphisme

O

Il ne reste plus qu'a montrer que B est simplement connexe. I faut déja voir que B
est connexe par arcs. Pour cela, soit ¢ un chemin d’origine b et montrons que ¢ peut étre
relié & ¢y le lacet constant en b. Pour cela on considére le chemin dans B (un chemin de
chemins...) donné par

(s,t) — c(st)

(c’est-a-~dire que 'on parcoure de moins en moins de portion de chemin ¢). Ceci est bien
un chemin d’origine ¢, et d’extrémité c.

Enfin, soit v un lacet basé en [cy] dans B. On va contracter v sur [¢]. L’argument
est simple mais abstrait (une homotopie est un chemin de chemins de chemins...) Pour
faire ¢a, on utilise la propriété de relevé des chemins maintenant que 1’on sait que 'on a
situation de revétement 7 : B — B : on projette ~v dans B, on a donc un vrai chemin
dans B, que 'on peut relever. Ce relevé est ’homotopie voulue. Plus explicitement, pour
chaque chemin ¢, d’origine b, on note ¢ — [¢;] le relévement de ¢ d’origine [cp]. Puisque
7 est le relévement de 7 o« d’origine [¢p], on a par unicité, pour tout t € [0, 1],

Alors,

est une homotopie entre [c] et 7. O

2.2.6 Théorie de Galois des revétements

La théorie des revétements est une théorie bien aboutie puisque I'on parvient a classifier
tous les revétements (connexes) au dessus d’une base fixée. Ce théoréme de classification
ressemble beaucoup a la classification des extensions de corps au-dessus d’un corps fixé.
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Rappelons en effet que la théorie de Galois classique consiste & montrer que 'on peut
classifier les sous-extensions d’une extension

K

k

a l’aide des sous-groupes de Auty(K). On montre qu’il y a une bijection entre I’ensemble
des extensions L (respectivement galoisiennes) avec

K

/

L\k

et les sous-groupes de Auty(K) (respectivement les sous-groupes distingués).
Dans ce paragraphe, on montre qu’il existe une correspondance analogue dans le
contexte de

X

|

un revétement. Notre objectif est de trouver une bijection entre les revétements p : X —
B tels que

B
Y
X 7

N

B

et les sous-groupes de 71 (B) et de préciser quelle classe d’objet correspond aux sous-
groupes distingués. L’application ® fait référence a la définition du revétement universel.

Remarque Dans ce contexte, le revétement universel joue le role de la cloture algébrique
d’un corps k.

écrire les preuves

Théoréme 2.2.21. Soit p : X — B un revétement avec X connexe et soit v € X,
b=p(z) et F =p 1(b). Les assertions suivantes sont équivalentes.

(i) L’action de Aut(p) sur F' est transitive.
(ii) p«(m1(X,x)) est distingué dans m(B,b).
(111) p«(m1(X,v)) = p«(m1(X, 2)) pour tout y,z € F.

(iv) Pour tout lacet o de B en b, ou bien tout relevement de o est un lacet, ou bien
aucun relévement de o n’est un lacet.

(v) 1l existe un groupe (discret) I' agissant librement et proprement sur X et un homéo-
morphisme f:T\X — B
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On dit alors (par analogie) que le revétement est galoisien. L’équivalence entre (ii)
et (v) est la plus importante et correspond a la caractérisation géométrique que nous
cherchions : un revétement p : X — B est galoisien si B s’obtient comme l’espace des
orbites d'un groupe discret agissant sur X.

2.3 Exercices corrigés pour le chapitre 2

Enoncés des exercices

Exercice 2.1 Montrer qu'une variété contractile est simplement connexe. Discuter
la réciproque.

Exercice 2.2 (Homéomorphismes locaux et revétements)

Soit f : X — Y une application continue. On dit que f est un homéomorphisme
local si pour tout x € X, il existe un voisinage U de z tel que fi;y : U — f(U) soit un
homéomorphisme.

1. On suppose que X et Y sont deux ouverts de R", que f est différentiable et
que, pour tout x € X, d,f est inversible. Quel théoréme affirme que f est un
homéomorphisme local 7

2. On suppose que f est un revétement. Montrer que f est un homéomorphisme local.
On cherche ensuite des conditions qui permettent de conclure a la réciproque.
3. Montrer que la réciproque est fausse en général.

4. On suppose que f est un homéomorphisme local et I'une des deux conditions suiv-
antes

(i) Le cardinal de chaque fibre f~!(y) est fini constant non nul.

(ii) f est propre et Y est connexe.

Montrer qu’alors f est un revétement.

Exercice 2.3 (Séparabilité, exemples)

1. Montrer que si X et G sont séparés (de Hausdorff) et si G agit proprement sur X,
alors les orbites sont fermées et I'espace des orbites X \G est séparé.

2. On suppose le groupe G fini (et discret) et l'action sur X libre. Montrer que la
projection canonique X — X \G est un revétement a card(G) feuillets.

3. En déduire que RPP" est revétu par la sphére. Qu’appelle-t-on un espace lenticulaire
?

4. Soit H un sous-groupe discret d’un groupe topologique séparé G. Montrer que H
est fermé et la projection canonique G — H\G est un revétement.

5. En déduire que R" revét le tore.
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Exercice 2.4 (Construction de surfaces hyperboliques)
Soit g > 2 un entier.

(a) Soit 34 la surface topologique orientable de genre g (i.e. la somme connexe de g
tores). Montrer que ¥, se réalise comme quotient d’un 4g-gones par des identifica-
tions de faces (faire un dessin en s’inspirant du tore).

(b) Dans le disque de Poincaré D, montrer qu’il existe un polygone hyperbolique régulier

P a 4g cotés dont tous les angles intérieurs valent 6 = 2”—9.

(c) Soient pi,....pi, ... .0, ..., p] les 4g sommets de P. Montrer qg’il existe 01,..., 02
des isométries hyperboliques telles que o2i—1(p}) = Ph, 02i—1(ph) = ph et o2 (ph) =
pllﬂ, o2(ph) =py pouri=1,...,g.

d) Soit H := {(01,...,09,) < PSLo(R). Montrer que H est discret et agit proprement

9 q git prop

sur D. En déduire que la projection canonique 7 : D — D / H est le revétement
universel de H.

(e) Montrer que X, peut étre munie d’une métrique localement hyperbolique.

Exercice 2.5 (Groupe fondamental du cercle et applications)

(a) Quels théorémes du cours permettent de montrer les deux faits suivants :

e Si f :[0,1] — S! est une application continue, pour tout tp € R tel que
f(0) = 7o i] existe une et une seule application continue f : [0,1] — R telle
que f(o) =tg et f(t) = 2™ pour tout t € [0,1].

e Sih:[0,1] x[0,1] — Stetsif:][0,1] — R est une application continue
telle que h(0,t) = €27/ pour tout ¢t € [0,1], alors il existe une application

B [0,1] x [0,1] — R telle que h(0,£) = f(t) et h(s,t) = e2mh(s)

(b) Montrer que pour tout x € S, I'application ¢, : m1(S!, ) — Z définie par [y]
4(0) — (1) ot 4 est un relevé de «y est un isomorphisme de groupes.
Soit f : S' — S! et 2 un point de S!. Posons y = f(x). La composition des
morphismes de groupes ¢! o f. o Oy

Z — m(Shz) = m(Sty) = Z

est un morphisme de groupes de Z dans Z. C’est donc la multiplication par un entier,
qui ne dépend pas de x d’aprés ce qui précéde. On le note deg(f) et on lappelle
degré de 'application f.

(c) Calculer le degré d’une rotation et de I’application z — 2".

(d) Montrer que deg(fog) =deg(f)deg(g). En déduire que si f est un homéomorphisme
alors deg(f) = £1.

e) Montrer que deg(f)=deg(g) si et seulement si f et g sont homotopes. En déduire
Mont d d i et seul t si t t homot En dédui
que deg(f) = 0 si et seulement si f se prolonge contintiment en une application

f':B? —Sh
(f) Montrer qu’il n’existe pas de rétraction de B? dans S!.

(g) En déduire le théoréme fondamental de l'algébre : tout polyndéme complexe non
constant admet au moins une racine.
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Exercice 2.6 Théoréme du relévement

Soit p : X — B un revétement, Y une variété connexe et f : Y — B une application
continue. Soit y € Y, b = f(y) et * € p~!(b). Montrer qu’il existe une application
f:Y — X (nécessairement unique) telle que po f = f si et seulement si

fe(m1(Y,y)) C pe(mi(X, @)

En déduire qu’un revétement simplement connexe est universel.

Exercice 2.7 (Classification des revétements du cercle)
Trouver tous les revétements a isomorphisme prés d’espace totaux connexes et de
base le cercle S'. Pourquoi sont-ils tous galoisiens ?

Exercice 2.8 (Revétements de bouquets)

(a) Trouver tous les revétements d’espaces totaux connexes et a 2 feuillets du bouquet
de k cercles. Lesquels sont galoisiens 7

(b) Trouver tous les revétements d’espace totaux connexes a 3 feuillets du bouquet de
deux cercles. Lesquels sont galoisiens ?

(c) Construire un revétement universel du bouquet de deux cercles.

Remarque Le bouquet de plus deux cercles n’est pas une variété...mais ca n’est pas
bien grave.

Corrigés des exercices (ou référence)
Exercice 2.1
Exercice 2.2
Exercice 2.3
Exercice 2.4
Exercice 2.5
Exercice 2.6
Exercice 2.7

Exercice 2.8



Chapter 3

Variétés hyperboliques

3.1 Qu’est-ce qu’une variété hyperbolique

3.1.1 Introduction

Une variété est un espace topologique localement homéomorphe 4 R™ satisfaisant a la
condition (de recollement) suivante

Figure 3.1: Une variété hyperbolique

Une variété hyperbolique est un raffinement de la notion de variété : les ouverts
©(U1) et p(Usz) sont maintenant des ouverts de H™ (ce qui n’est pas une restriction

99
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mais plutdt une convenance psychologique) et les changements de cartes sont données
par des isométries de H". Une variété hyperbolique est donc un collage lisse de petits
morceaux de I'espace hyperbolique. C’est en fait un cas particulier de ce qu’on appelle
une (G, X)-structure

3.1.2 (G, X)-structure ou structure géométrique

Dans les années 1870, F. Klein propose une vision différente de la géométrie, trés attachée
a la notion de groupe. pour Klein, une géométrie est I’ensemble des invariants sous
I’action d’un groupe de transformations donné. Son programme de recherche visant a
clarifier cette notion est connu sous le nom de programme d’Erlangen.

Par exemple, si on pense & la sphére S? comme I’espace homogéne O3(R)/O5(R), on
fait de la géométrie sphérique, tandis que si on pense & S? comme PO(3,1)/Stab(§) ou
& est un point a 'infini de ’espace hyperbolique, alors on fait de la géométrie conforme.
Ou encore si R" — {0} =GL,(R)/ (GLyp—1(R) x R"71), c’est le lieu de I’algebre linéaire
mais si R” =0, (R) x R"/0,(R), c’est plutdt le lieu de la géométrie euclidienne.

Le but de cette section est de définir proprement cette notion. Soit alors X une
variété connexe et G un sous-groupe du groupe des difféomorphismes de X. Dans toute
la suite, on fait I’hypothése que le groupe G n’est pas trop gros, au sens suivant :

Définition 3.1.1. On dit que G agit analytiquement sur X si pour tout couple g1, go de
G et tout owvert U de X, si gajy = goju, alors g1 = ga.

On construira plus tard un objet par prolongement analytique et cette hypothése
sera nécessaire.
On suppose donc dorénavant que G agit analytiquement et transitivement sur X.

Définition 3.1.2 ((G, X)-structure ou structure géométrique). Soit V' une variété dif-
férentiable. Une (G, X)-structure sur V est la donnée d’un atlas de cartes @; : V; = X
tel que

o Les V; sont ouverts et recouvrent V.
o Les ¢; sont des difféomorphismes sur leurs images.

e Tout changement de cartes fi; : jop;  : pi(ViNV;) — ¢;(ViNV;) est la restriction
de l'action de G

On dit aussi que V' est une (G, X )-variété.

Exemple
Structure Espace | Groupe
Euclidienne R™ | On(R) x R”
Sphrique S* | Op41(R)
Hyperbolique | H"™ | PO(n,1)
Affine R™ GL,(R) x R™

Définition 3.1.3. Soit V et V' deuz (G, X)-variétés. Un (G, X )-morphisme f:V — V'
est un difféeomorphisme local qui est donné via les cartes par des restrictions d’éléments
de G

Précisément, pour tout point x € V, il existe un ouvert Uy contenant x, un ouvert
Us contenant f(x) et des difféomorphismes sur leurs images ¢ : Uy — X et ¢ : U — X
tels que

Yo fop !

est la restriction d’un élément de G a p(Uy).
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Figure 3.2: Morpshime de (G, X)-structure

3.1.3 Développante et holonomie

Soit V' une (G, X)-variété. Nous allons construire une application D : V — X qui est
un morphisme de (G, X)-structure et qui aidera & comprendre la structure de V. Cette
application est par construction un difféomorphisme local mais son comportement global
peut étre trés compliqué.

Proposition 3.1.4. Il existe un (G, X)-morphisme D : V — X. Tout autre (G, X)-
morphisme est de la forme go D ot g € G.

Preuve: On utilise les deux idées suivantes :
1. Localement V ressemble & V' et on peut construire D avec une carte.

2. On utilise ensuite ’hypothése d’analyticité et une sorte de prolongement analy-
tique.

Existence

Soit vp € V. On choisit une carte de la (G, X)-structure, ¢g : Vo — X autour de vy
(voir exercice ref ). L’application recherchée coincidera avec ¢g sur Vj et on cherche a
la prolonger. Pour cela, on note qu’il existe une suite de cartes ; : V; — X telle que

UVvi=V et VinVig #0.
€N
Par définition de (G, X)-structure, il existe, pour chaque 7, un élément g; € G tel que
Pi—1 = gi © P
sur Uintersection V;_1 N'V; (le changement de cartes est donné par g;). Pour v € V;, on
pose
D(v) = g1 092 gi(i(v)).
Cette application est bien définie. En effet, si v € V; N V;s (disons i < i), alors
gi+1 - gir (pir (V) = pi(v)
par définition des g;.
Unicité
On montre en fait le lemme
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Lemme 3.1.5. Soit W une (G, X)-variété connexe. Deuzx (G,X)-morphismes ¢, ¢ a
valeurs dans X qui coincident sur un ouvert non vide, coincident en fait sur tout W.

Preuve: Soit
A= {w € W tel que ¢ = ¢’ dans un voisinage de W}

Par construction A est ouvert et par hypothése, A est non vide. On veut montrer que A
est aussi fermé. Soit donc w un point de 'adhérence de A. Dans une carte ¢ : U — X
autour de w, ¢ et ¢’ sont représentés par des éléments g et ¢’ de G

Mais g et ¢’ coincident sur (U N A) qui est non vide car w est adhérent a A. Donc
g = ¢’ (hypothése d’analyticité). Ainsi ¢ et ¢ coincident au voisinage de w. O

Une conséquence directe de ce lemme est que si D et D’ sont deux (G, X )-morphismes,
alors, au voisinage de v, D' = go D pour un certain ¢ € G, d’ou 'on conclut que
D' = go D partout sur V. O

Notons I' = 71 (V). Ce groupe agit sur V ("action du groupe fondamental de la base
sur la fibre").

Corollaire 3.1.6. Il existe un morphisme de groupes h : I' — G tel que, pour tout v € T,
Do~y =h(y)oD.

Preuve: D et D o+ sont deux (G, X)-morphismes : ils différent d’un élément de
h(7y) € G. On vérifie facilement que h est un morphisme de groupes. O

Définition 3.1.7. On dit que h est le morphisme d’holonomie de (G, X)-structure.

Par analogie, on appelle parfois I'action de (V') sur V.

3.1.4 Complétude

On suppose dans cette section que X est simplement connexe. Les exemples importants
de (G, X)-structure s sont celles qui sont revétues par X.

Lemme 3.1.8. SoitI' un groupe agissant librement et discontiniment sur X de sorte que
I' est en fait un sous-groupe de G. Alors I'\X est aussi munie d’une (G, X)-structure.

Preuve: On sait déja que 7 : X — I'\ X est un revétement (c’est méme le revétement
universel). Mais une petite difficulté survient : en choisissant un ouvert trivialisant dans
M\ X, qui est donc difféeomorphe a un ouvert de X, on ne construit pas tout de suite une
carte de (G, X)-variété. Rappelons en effet que les ouverts trivialisants sont les ouverts
(V) o, pour chaque point z, V,, est construit de sorte que, pour tout v € I'\ {e},

y(Vp) NV, =

Prenons donc deux ouverts trivialisants qui s’intersectent, disons m(V;) N m (V) # 0. 1l
se peut qu'il existe vy € I' tel que Vj, intersecte a la fois V, et y(V,) (il peut méme exister
plusieurs tels ).

Or, parmi toutes les intersections (V) NV, il y en a une qui est difféomorphe a
7(Vy) Nw(V,). Le changement de carte est alors donné par vy~ 1. O

Déﬁpition 3.1.9. On dit qu’une (G, X)-structure sur' V' est compléte si la développante
D :V — X est un homéomorphisme (auquel cas V est le quotient de X par une action
libre et discrete de son groupe fondamental).
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Lorsque l'on écrit V' =T'\ X, on dit parfois que 'on a uniformisé la (G, X)-structure.

La fin de ce paragraphe est hors-programme parce qu’elle utilise des notions de
géométrie riemannienne (voir cependant I'exercice ref et aussi Ratcliffe pour le cas général

Le premier théoréme peut s’énoncer de maniére a cacher la présence de la géométrie
riemannienne. C’est cette version qui est détaillée en exercice.

Théoréme 3.1.10. Toute (Isom(H™), H")-structure sur une variété compacte est com-
pléte.

Mais on peut faire un peu mieux.

Définition 3.1.11 ((G, X)-structure métrique). Une (G, X) variété métrique G est une
(G, X)-variété ou X est une variété riemannienne et G est un sous-groupe du groupe des
isométries de X

Une (G, X)-variété métrique est naturellement munie d’'une métrique riemannienne
si on impose que les cartes soient des isométries et cette condition détermine une unique
métrique.

On suppose donc que X est une variété riemannienne (toujours simplement connexe)
et que G est un sous-groupe du groupe des isométries de X. C’est bien siir le cas de
Iespace hyperbolique X = H" avec le groupe G = Isom(H"). La version la plus générale
d’uniformisation est la suivante.

Théoréme 3.1.12. Soit V une (G, X )-variété métrique. Les deux conditions suivantes
sont équivalentes :

1. 'V est complet en tant qu’espace métrique.

2. V est complete comme (G, X)-structure.

3.2 Groupes kleiniens

Définition 3.2.1. Un sous-groupe kleinien est un sous-groupe discret de Isom™ (H") (en
dimension 2, on dit aussi un groupe fuchsien).

Le fait de s’intéresser a des groupes kleiniens a été justifié au paragraphe précédent :
considérer I’espace des orbites d’un groupe kleinien (qui agit proprement discontintiment)
est en effet 'unique moyen de construire des variétés hyperboliques complétes. Le but
de ce paragraphe est de montrer que le caractére discret du groupe se lit sur son action
sur H™ et inversement. En particulier, nous prouvons que 'action d’un groupe discret
sans éléments elliptiques donne une situation de revétement H™ — '\ H".

Remarque Un groupe I' est discret si et seulement si
(T, el, T, » 1d) & T,, = Id pour n assez grand.
En effet grace a la structure de groupe, on peut tout "ramener & 1d".

On rappelle que pour un groupe discret I, il agit proprement si toute I'-orbite est
localement finie i.e, pour tout compact K C H", {g € T, gK N K # 0} est fini. Nous
allons montrer dans un premier temps que, pour un groupe discret d’isométries de H",
la discrétude implique déja que I' agisse proprement. En revanche, nous ne ferons pas
systématiquement ’hypothése que le groupe agit librement (par exemple I" peut contenir
des éléments elliptiques, auquel cas I'\H" n’est pas une variété (et H" — I'\H" est un
revétement ramifié, mais nous n’entrerons pas dans les détails).

Pour ne pas avoir a répéter I’hypothése que le groupe est discret, on utilise la défini-
tion suivante
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Définition 3.2.2. On dit que I' agit proprement discontiniment si toute I'-orbite est
localement finie.

Ainsi si I est discret et qu’il agit proprement, alors il agit proprement discontintiment.
On montrera que la réciproque est aussi vraie.

Remarque De maniére évidente, I' agit proprement discontintiment si et seulement si
chaque orbite est discréte et si chaque stabilisateur est fini.

Nous montrerons que la discrétude de toutes les orbites implique la discrétude du
groupe.

Commencons par analyser la topologie de Isom(H™). On dispose a priori de deux
topologies sur Isom(H") :

1. La topologie de PO(n, 1) comme (quotient de) groupes de matrices.

2. La topologie de la convergence uniforme sur les compacts donnée par ’action sur
H™ (topologie compacte-ouverte).

Théoréme 3.2.3. Ces deux topologies coincident.

Preuve:

Lemme 3.2.4. Une suite d’isométries (¢;) d’un espace métrique X converge uniformé-
ment sur les compacts vers une isométrie ¢ si et seulement si elle converge simplement.

Preuve: La condition est évidemment nécessaire puisqu’un point est compact.
Inversement, soit K un compact et € > 0. On suppose que (¢;); ne converge pas
uniformément sur K : il existe donc une suite croissante d’indice (i;); et une suite de
points (z;); de K tel que
d(¢s; (x5), p(x5)) = €.

Quitte & extraire encore dans la suite (x;), on peut supposer que (x;) converge vers
r € K. On choisit alors j tel que d(zj,z) < /4 et d(¢;, (), p(x)) < /2 (grace a la
convergence simple au point z). Il suit que

d(i; (), p(25)) < d(i;(x5), ¢i; () + d(¢i; (), §()) + d(d(x), d(x5)) < €.

Revenons au théoréme

e Supposons que A; — A dans PO(n,1). Alors, pour tout z, A;x — Az (action
linéaire). Ainsi A; — A pour la topologie compacte-ouverte d’aprés le lemme.

e Inversement, on suppose que A; — A uniformément sur les compacts de H". Alors
Ajepp1 — Aepqq. Puis, en posant v; = e; + \/Qenﬂ € H™, alors

Aﬂ)j = Aiej + \@Aiem_l — A’Uj = Aej + \/§€n+1.
Donc Aje; — Aej, ce qui suffit & montrer la convergence dans PO(n, 1).
O

Théoréme 3.2.5. Le groupe I' est discret si et seulement si I' agit proprement discon-
tindment sur H".

Preuve:
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Lemme 3.2.6. Les applications d’évaluation

fa: Isom(H") — H"
Y — 7a

sont propres.

Preuve: Dans le modéle de la boule, on rappelle qu’il existe des translations hyper-
boliques 7, envoyant 0 sur a. Avec ces translations, on forme un homéomorphisme

fi OpR)xH' —s Tsom(H"
(A, a) — ToA

faut-il en dire plus 7 . Soit K un compact de H". L’ensemble {v € Isom(H"), ya € K}
s’identifie via ’homéomorphisme ci-dessus a O, (R) x K qui est donc compact. ]

Lemme 3.2.7. Soit I' un sous-groupe agissant proprement discontiniment sur H" et
soit p € H"™ un point fixé par un certain élément v #id, v € T'. Il existe un voisinage de
p dans lequel tous les autres points (différents de p) ne sont fizés par aucun élément de
I’ (différent de l'identité). En particulier, il existe des points de H" qui ne sont fizés par
aucun élément du groupe.

Preuve: Supposons que vp = p pour v #id et qu'il existe p, — p et v, € T tels que
YnPn = Pn. La boule fermée Bs.(p) est compacte donc {*y el ywpe ng(p)} est fini.
Ainsi, pour n suffisamment grand, d(y,p,p) > 3¢ et d(pn,p) < €. Puis, par l'inégalité
triangulaire,

d(Ynp, p) < d(Vnp, YnPn) + d(Ynpn, p) = d(pn, p) + d(pn, p) < 2¢.

Revenons au théoréme

1. Supposons que I' soit discret et soit K un compact de H", z € H". L’ensemble
{y €T, vz € K} est un compact de I donc est fini.

2. Inversement, supposons que I' agisse proprement discontintiment mais ne soit pas
discret. On choisit un point s € H" fixé par aucun élément du groupe. Puisque I"
n’est pas discret, il existe des élément distincts v, yx —id. Donc ys — s. Puisque
s n’est fixé par personne, les ;s sont tous différents. Toute boule fermée centrée
en s contient donc une infinité d’élément de 1'orbite.

O]

Corollaire 3.2.8. Le groupe I' agit proprement discontiniment si et seulement si, pour
tout z € H", l'orbite I'z est discréte dans H".

Preuve: SiT agit proprement discontintiment, chaque orbite est localement finie donc
discréte. Inversement, si I' n’agit pas proprement discontiniment, alors I' n’est pas
discret par le théoréme précédent. On a construit au cours de la preuve une orbite non
discréte. O

3.3 Groupes élémentaires

Dans cette section, on se place en dimension 3.
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3.3.1 Préliminaire sur les points fixes

Pour un élément v €PSLy(C), v #id, on note F, = {z eC, vz = z}.

Remarque Le cardinal de F, est 1 ou 2. Si 7 est parabolique ou hyperbolique, alors
F, = {z ceH3UC, vz = z}. Si 7 est elliptique, alors Fy = {«, 8} (une transformation

de SO3(R) est une rotation autour d’'un axe) et la géodésique (af3) est fixe points par
points.

Proposition 3.3.1. 1. Les isométries v et v ont un point fire en commun si et
seulement si trace [y,7] = 2.

2. On suppose que trace [y,7'] =2 et v #id, ' #id. Alors

(a) Soit [y,¥]=1 (i.eyy =+"v) et Fy = Fy.
(b) Soit [y,~'] est parabolique et F, # F

Remarque Le commutateur [y,7'] est indépendant du choix des représentants dans
SLa(R) : la trace est donc bien définie.

b / b/
Preuve: 1. On peut supposer que v = <g d) avec ad = 1. Posons v/ = (Z, d'>

avec a'd — b'¢ = 1. Le calcul donne
trace [v,7] = 2+ b*c? + bc(a — d)(a' — d') — b/ (a — d)>.

Si F, N Fy # 0, on peut supposer que yoo = 7'co = 0o et alors ¢ = 0 puis donc
trace [v,7] = 2.
Inversement, supposons trace [y,7'] = 2.
e Si v est parabolique, on peut supposer, v(z) =2+ 1 (lea=d=0b=1). De
trace [y,7'] = 2, on tire ¢ = 0.

e Si v n'est pas parabolique, on peut supposer que v(z) = k?z (voir l'exercice
sur les classes de conjugaison ) qui regroupe le cas hyperbolique et elliptique
(a=k,b=c=0,d=1/k). Ainsi v(0) = 0 et v(c0) = co. Donc

2 = trace [7,7] =2 - (a — d)? donne V¢ =0
Ainsi, soit ¢ =0 et 4’00 = o0, soit V' =0 et 7/(0) = 0.

2. On suppose yoo = 700 = oo donc

_fa b ot - — a v
7= \o 1/a = \o 1/d
Un calcul facile donne [y,7] = 1 si et seulement si %/ (1 - ag) = % (1 — a’2). Puis,
on déduit
e Sia =1, alors b # 0 car v #id; on obtient ' = 1. Dans ce cas Iy, = F,y =
{oo}-

e Sia+#1,alors F, = {oo, 1/£7a}. L’équation donne l/a%a = Uabfila/'

O

Proposition 3.3.2. Soit v, v €PSLy(C) deux isométries de H* différentes de id. Les
propriétés suivantes sont équivalentes
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1.9y =19
2. v(Fy) =Fy et y(Fy) = Fy.
3. (a) Soit F, = F.
(b) Soit FyNFy =0 et alors v* = /? = (77’2)2 =1 ety ety ont un point fize

en commun dans H3.

Preuve: 1. Si~y et~y commutent, les espaces propres de I'un sont stables par 1’autre
(on rappelle que 'action des isométries sur C est l'action projective. Ceci montre
que 1. implique 2. .

2. Pour montrer que 2. implique 3. , on suppose 2. et F, # F,,. Il existe donc
a € C tel que y(a) = a et ¥'(a) # a. Or 7/(«) € Fy donc F, = {«,f} ou
B =~'(a) # . Maintenant 7/(3) € F, : si v/(8) = 3, on aurait 7/(a) = «; c’est
donc que 7/() = a On obtient bien que F, N F, = @ (ni o, ni 3 n’est fixé par /).
De plus, 7" fixe a, 3 et FE, et on déduit que 42 =1 (il a trop de points fixes).
De méme v (o) = 3 et v7/(8) = a donc, F.,., N F, = 0, puis (y7)* = 1.
Ou encore, en échangeant le role de v et 4, on montre que 72 = 1.
Quitte & conjuguer, y(z) = kz car v n’est pas parabolique. Donc v = —id. Du
coup v'(z) = %, puisque 7/ échange les points fixes de v. L’action dans H? = /3

est
_ _ _ Kz+ |K|tj
Yz +tj)=—z+tj et V(2 +1)) = —5——= K1t
|27+ t2
On vérifie que +/|k’|j est fixe par v et 7.
3. Supposons enfin 3. . Si F, = F,/, par la proposition précédente, on a 1. . Si

F, # F., le groupe engendré par y et 4 est d’exposant 2 donc commutatif.
O

3.3.2 Sous-groupes élémentaires de PSL,(C)

Les sous-groupes élémentaires sont les sous-groupes du groupe d’isométrie de H? sont les
groupes qui ont une dynamique pauvre, au sens suivant.

Définition 3.3.3. Un sous-groupe de PSLy(C) est élémentaire s’il admet une orbite finie
dans H? U C.

Nous avons déja remarqué que les isométries qui ont une dynamique intéressante sont
les isométrie parabolique et hyperbolique. Cette remarque naive peut étre soutenue par
I’énoncé suivant.

Théoréme 3.3.4. Soit G un sous-groupe de PSLs(C) qui ne contient que des elliptiques
(et 1). Alors il existe un point fize x € H3 commun a tous les éléments de G. En
particulier, G est élémentaire.

Corollaire 3.3.5. Si G est fini, alors G a un point fize dans H?>.

Pour attaquer la preuve de ce théoréme, nous aurons besoin de deux lemmes sur
les points fixes des groupes qui ne contiennent que des elliptiques. On rappelle qu'une
isométrie elliptique 7 a deux points fixes a et 8 au bord de H3, que la géodésique (o/3)
est fixe point par point. On note cette géodésique A, et on I'appelle 'axe de 7.

Lemme 1. Soit v, 7' des elliptiques tels que vy’ est aussi elliptique.
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e Les points fizes de v et v' sont cocycliques.

o Si de plus [7y,'] est elliptique ou 1, alors les azes de v et ' se coupent dans H3.
Lemme 2. Soit v et o avec un point five commun dans H® (donc elliptiques). Alors

e Soit tous les éléments de (v,') ont le méme aze A, = A

o Soit il existe v € (7,7') tel que Ay, Ay et Ay ne sont pas coplanaires.

Voyons déja comment prouver le théoréme.

Preuve du théoréme: Si tous les éléments de G ont le méme axe, le théoréme est
démontré (I’axe est fixe point par point). On peut donc supposer qu’il existe v et " dans
G et différents de 1 tels que Ay # A,,. On applique le lemme 1 : 7" est elliptique, [, /]
est elliptique ou 1. Ainsi A, N Ay # 0 dans H3. En conjuguant G, on peut supposer
que A, N A, = {0} dans B3. Ensuite, avec le lemme 2, il existe v € (v,7') tel que
A, Ay et Ay ne sont pas coplanaires. Toujours d’aprés le lemme 1, 'axe de 4" coupe
les deux autres et le point d’intersection ne peut étre que 0, sinon les trois axes seraient
coplanaires. Il s’agit maintenant de montrer que 0 est un point fixe commun & tous les
éléments de G. Soit donc 6 € G, § # 1. Par le lemme 1, A, et As se coupent dans
B3. Donc A, et As sont dans un méme plan P. C’est un plan vectoriel car 0 € A,. De
méme, il existe P’ contenant 0, A, et As, et P” contenant 0, A,» et As.

Ainsi A; est contenu dans PN P’ N P” qui est de dimension 0 (exclu car il contient
As), 1, ou 2 (exclu parce que P = P’ = P” est absurde car A,, Ay et A, ne sont pas
coplanaires). Finalement As = PN P’ N P"” et Ay contient 0 ! O

Terminons donc avec les deux lemmes restants

Preuve du lemme 1: Si F,NF, # (), alors les points fixes sont cocycliques (il n’y en
a que 3). Si de plus, [y,7'] est elliptique ou 1, alors [y,7'] = 1 et F, = F/ (proposition
3.3.1 des préliminaires). Donc A, = A

Si maintenant F, N Fy = (), on peut supposer que y(z) = kz avec |k| =1, k # 1. On
pose 7/ (z) = Zjifl ot trace? y est réelle et dans [0,4[. De méme, trace? vy = (ka + kd)?
est réelle et dans [0,4[. On en déduit qu'il existe u et v dans |—2,2[ tels que a +d = u
et ka + kd = v. D'ou

a:ku—v ot d:ku_}]

k—k k—k

On en retient que a = d, ce qui est utile pour faire le calcul des points fixes de 7/. On

trouve facilement )
a) B = % <(a —d) £1iv/4 — trace? 7’)
c

et on constate que o/, 8’ € iR.

Rappel. On rappelle qu’on dispose d’un critére (de nature projective) pour décider
si 4 points de C sont cocycliques, c’est-a-dire en fait si 4 points de la droite projective
complexe sont sur la méme droite projective réelle : il suffit de vérifier si le birapport est
réel. On énonce sans preuve les propriétés utiles du birapport.

e Soient donc p1, p2, p3 et ps des points distincts de @; le birapport de ces 4 points
est le nombre complexe donné par

. . . _P2—pa P3—P1
[pl-p2-p3-p4]— : .
P2 —PpP1 P3 — P4
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e Pour tout A€ C, A #0,

[p1:p2 1 p3:pa) = [Ap1: Ap2 : Aps : Ap4]

(on peut en fait montrer que le birapport est invariant par toute transformation
projective (bijective).

e Il est facile de voir que
0:1:00:2] =2

e Enfin, on montre que p1, po2, p3 et p4 sont cocycliques si et seulement si

[p1:p2 :p3:pa) €R.

il suffit de montrer que GLa(C) est trois fois (projectivement) transitif sur C et de
se ramener au cas précédent ot p;1 =0, p2 = 1 et p3 = oc.

Ici, les 4 points fixes sont 0, oo, o’ et 3 et on a

[Ozoo:a':ﬁ'}:{O:oozlzﬂ:}:—ﬂieR
a «@

car o et 3’ sont dans iR.
Enfin, pour voir que les axes se coupent, posons

e? 0 , a b -
’y—(o ei9> et’y—<c d> avec a =d, ad —bc=1

Le calcul donne
trace? [v,7] =4 (1 +sin? @ <|a\2 - 1)) .

Pour que [v,~] soit elliptique, il faut nécessairement que |a|* < 1. Ecrivons a = s + it,
donc d = s — it, de sorte que les points fixes sont

o, ,B’:£<ti\/1—32>.

Pour que les points fixes se coupent, il faut que 0 soit a 'intérieur du segment [o/3'] donc
que les signes des parties imaginaires de o’ et 3" soient opposés. Posons encore o' = A1 %
et B = A2, On trouve

)\1/\2:<t+\/1—32> (t—\/1—32) — 242 -1<0.

Preuve du lemme 2: On peut supposer que A, N A, contient 0 € B3,

1. Si A, = A, alors, pour tout 7" € (v,7), Ay = Ay = A, (v et 7/ fixent les
mémes points donc " aussi, donc son axe est le méme).

2. Si AyNA, ={0}, A, et A, sont dans un méme plan P et on distingue encore 3
sous-cas

(a) Si v(A,) nest pas inclus dans P, alors " = y7/y7!

V(Ay).
(b) De méme si 7'(Ay) n’est pas inclus dans P.

convient car Aﬁ/” =
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]

Figure 3.3: Les axes se coupent

(c) Sinon v(A,) C P et 4'(A,) C P. Ainsi vy(P) = P et 7/(P) = P. La
seule possibilité est que «y et +' soient des rotations d’angle 7 autour de leurs
axes. Soit alors A” 'orthogonale de P. Alors v et 4/ échangent A”(+00) et
A"(—00) donc v2 = 42 =1 et 4 = v9/ fixe A”(+o0) et A”(—o0). Donc ~"”
est elliptique d’axe A”

O]

Théoréme 3.3.6. Tout sous-groupe abélien de PSLy(C) est élémentaire (et méme fize
un point).

Preuve: Si ce groupe ne contient que des elliptiques, c¢’est bon. Si ce groupe contient
un élément parabolique ou hyperbolique ~, alors, pour tout 7/ € G, vy = 4y donc
(proposition 3.3.1) F, = F,/. Donc F, est fixe par G. O

3.3.3 Sous-groupes discrets élémentaires

Théoréme 3.3.7. Soit I' CPSLy(C) un groupe discret et élémentaire.

1. Soit T ne contient que des elliptiques et alors ' est isomorphe a Z/nZ, a Dy, 2y,
G4 ou AUs.

2. Soit T' contient un parabolique et alors il ne contient pas d’hyperbolique. Il est
isomorphe & un groupe discret d’isométries du plan euclidien.

3. Soit ' contient un hyperbolique, Alors il ne contient pas de parabolique.

Preuve: 1. Dans le premier cas, I' fixe un point : il est conjugué a un sous-groupe
de SO3 qui est compact. Donc I' est fini. Les sous-groupes finis de SOg3 sont les
d’isométries

e directes et indirectes d’un n-gone. On obtient un groupe cyclique Z/nZ ou
diédral D,,.

e directes du cube et de 'octaédre : G4.
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e directes du tétraédre : 4.

e directes du dodécaédre et de 'icosaedre : As.

Lemme 3.3.8. Soit v un hyperbolique de PSLy(C) et soit o' tel que Fy, N Fy = {a}.
Alors (v,7') n’est pas discret.

Preuve: On peut supposer o = 0o, v(z) = kz avec |k| > 1 et 7/(2) = az + b. Alors
Y "Y' yM(2) = az + kT"b — az.
conclure O

2. Si I' contient un parabolique 4/, on suppose 7'0o = co. Toutes les autres orbites
de 4/ sont infinies donc, si I" a une orbite finie, c’est forcément {«a}. Puisque T fixe
un point, il est conjugué a un groupe de {z — az + b} avec |a| = 1 (I ne contient
pas d’hyperbolique). C’est un groupe d’isométries euclidiennes.

3. Découle du point 2.

3.4 Reégions fondamentales

On se place a partir de maintenant en dimension 2 bien que la théorie soit semblable en
dimensions supérieures. Nous avons déja établi une correspondance entre variétés hyper-
boliques et groupes discrets d’isométries de H? : d’une variété hyperbolique, on obtient
un groupe en considérant le groupe fondamental, et d’un groupe en obtient une variété en
prenant le quotient de H? par le groupe. Le but de cette section est d’expliquer concréte-
ment comment construire le quotient par un groupe donné et d’analyser la géométrie de
la variété obtenue.

Définition 3.4.1. Un polygone de H? est une partie convexe fermée dont les bords sont
des morceauzr de géodésiques. Un coté du polygone est un segment géodésique maximal
dans le bord. Un sommet est un point du bord a lintersection de deux cotés.

On ne suppose pas toujours que le polygone est fini. En revanche, on le suppose
localement fini : dans tout ouvert de HZ, le polygone peut s’écrire comme réunion fini
de géodésiques.

Soit maintenant T' un groupe discret agissant sur H?.

Définition 3.4.2. Un polygone est dit fondamental pour Uaction de I' si

1. Les images 7(](;) de lintérieur de P sont deux & deux disjointes.
2. Les images pavent H? : U'yEF v(P) = H2.

Ainsi, pour construire la variété quotient I'\H", il suffit de comprendre l’action de T
sur une région fondamentale.

Définition 3.4.3. Le domaine de Dirichlet D, associé a I' et centré en p € H? est

l’ensemble
D, = {z € H? VyeTl, d(z,p) < d(»’«’;’YP)}-

On constate a l'exercice ref que le domaine de Dirichlet de PSLy(Z) (qui est discret
dans PSLy(R) est un polygone. C’est presque toujours le cas.
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Figure 3.4: Domaine de Dirichlet

Proposition 3.4.4. Soit T’ un groupe fuchsien et p € H? un point a stabilisateur trivial
(un tel point existe d’aprés le lemme 3.2.7). Alors D,, est un polygone.

Preuve: L’ensemble D, est 'intersection des 1/2-plans
Dy ={z € H?, d(zp) <d(z,7p)}

pour v € I'. C’est donc un convexe fermé. Il reste & vérifier la condition de finitude
locale. Soit

Fr={yel, y#id, d(p,7p) < 2R}

Cet ensemble est fini car I' est fuchsien et que p n’est fixé par aucun point. Puis D, N
B(p, R) se réécrit comme réunion finie

v€l'R

On donnera plus tard des conditions qui garantissent que D), est fini.

Théoréme 3.4.5. Soit T un groupe fuchsien. Tout polygone de Dirichlet centré en p (a
stabilisateur trivial) est un polygone fondamental pour T agissant sur H?.

Preuve: L’orbite I' - p est fermée par discrétude I'. Pour tout z € H?, il existe vy € T
tel que d(z,T'p) = d(z,vp) On en conclut que y~1z € D,. En effet, pour tout 7/ € T,

d(y'z,p) < d(z,7p) < d(z,7'p)

Donc
d(y~"2,p) < d(z,77'p) = d(v"'2,7'p).
Ceci montre que |JvD, recouvre H2.

Si maintenant z est dans lintersection vD, N ~'D, avec v # ~'. Alors la distance
de z a I'p est atteinte en deux points différents (2 € D, signifie que d(z,I'p) =
d(z,vp)). Autrement dit, le point 7 'z est équidistant de p et de v~ '9/(p). Donc
vtz € {t, d(t,p) = d(t,ap)} pour un certain o € I'. Donc v~ 12 est sur le bord de D,
et les intérieurs sont disjoints. O
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3.4.1 Pavage et présentation

On montre dans ce paragraphe qu'un domaine de Dirichlet pour ’action de I' en donne
une présentation. Ainsila correspondance { groupes discrets } «» { variétés hyperboliques }
s’enrichit et on dispose maintenant de plus d’informations sur le groupe.

Lemme 3.4.6. Soit 2 € 9D,,. Alors il existe v #id tel que vz € OD,,. Cet élément y est
unique st z n’est pas un sommet.

Preuve: On sait que z € 9D, si et seulement si d(z,I" - p) est atteinte & la fois en p
et en yp. Ainsi la distance de v~z a l'orbite est atteinte en p et y~!p. Donc v~z est
aussi sur le bord du domaine. Réciproquement, si z et v~z sont dans 0D,, alors z est
équidistant de p et yp. Si z n’est pas un sommet, cela prouve 'unicité.

Figure 3.5: Un sommet est équidistant de p, y1p et yop

O]

Le lemme précédent ne précise pas que 'on doive avoir vz # z. L’égalité peut
avoir lieu pour les sommets mais aussi en certains milieux de segments géodésiques (par
exemple pour z = i dans Dy; de PSLy(Z))

Par convention, on rajoute ces points aux sommets, de sorte que, pour z € 9D, et
pour v € T', I’égalité vz = z ne peut avoir lieu que si z est un sommet. Autrement dit,
si z € 0D, n’est pas un sommet, alors vz est dans un autre coté de 9D,.

On note ¢y, -+ , ¢y, les cotés de 0D,,. L’action du groupe va nous donner une infor-
mation combinatoire que ’on exprime avec les ¢;. Pour chaque i, il existe en effet v; € T’
et un unique j tel que ~;c; = ¢j. Si le nombre de cotés de D), est fini, on en déduit déja
qu’il est pair. Par unicité, on a aussi, v; = 7;1. On note ¢ 'involution ¢ — j.

La donnée de o et des +y; s’appelle un appariement de faces pour D,. Le domaine
fondamental D,, étant toujours fixé, on obtient la proposition suivante

Proposition 3.4.7. On suppose P fini. Alors I' est engendré par les ;.

Noter bien qu’'un changement de domaine fondamental peut donner un systéme de
générateurs différents.

Preuve: Soit v € I'. Considérons un chemin a de p & yp qui évite les sommets de
toutes les images de D), et qui est transverse aux cotés. On note ¢q,-- - , ¢y la suite (finie
par compacité de o) des cotés des translatés de D, que l'on croise le long du chemin.



CHAPTER 3. VARIETES HYPERBOLIQUES 74

’\/‘j
|
|
N ) _« \“
) Ar,‘wmr\l\ /(Tv// \\
v v \\ , //

Figure 3.6: La suite des domaine fondamentaux translatés

Chacun est I'image d’un unique ¢;, de D,. Le domaine fondamental voisin de D,, accolé
le long de ¢;, est par construction 7; Y(Dp)
La suite des translatés traversés est donc v; 1(Dp), puis 7;, 1%_2 l(Dp), etc jusqu’a
1 - 1 . . -1 - 1 R
Y(Dp) = 71-1172-21 Yy (Dp). En particulier, yp = fyillfyi; ©+ 7 P et, comme p n’est
fixé par aucun élément, v s’écrit comme produit de ;. O

On voudrait maintenant trouver les relations dans le groupe. Elles sont associés aux
sommets du polygone. On dispose en effet d’une relation d’équivalence sur les sommets

s ~ s’ siet seulement s'il existe v € I' tel que s = s'.

Définition 3.4.8. e Un cycle elliptique est une classe d’équivalence pour la relation

~,

e L’angle d'un cycle est la somme des angles internes a D, en chaque sommet du
cycle.

On peut décrire ces cycles de maniére combinatoire. Notons s; = ¢; N ¢i11 et (i) =
o(i) — 1. Le cycle associé a s; est

{Sivs&(z’)vS&?(i)7 T 7551(1')}
ol szi41(;) = 4 (le plus petit [).

Proposition 3.4.9. L’angle d’un cycle est de la forme %’r ou q € Z. Dans ce cas,

Val(i) © - 0 engendre le stabilisateur de s; et est d’ordre q. En particulier, si le groupe
ne contient pas d’elliptiques, tous les angles de cycles sont 2m.

Preuve: Par construction, vs(;) 0 - -0 stabilise s; donc est d’ordre fini car le groupe
est discret. Or c’est la rotation d’angle I'angle du cycle. Pour s’en convaincre, on
rassemble autour de s; tous les translatés correspondants aux 7zr(;) et on suit le trajet
d’un point sur le segment ¢; 1 (voir figure 3.7).

je ne comprends pas pourquoi I’élément engendre O

On montre enfin une réciproque de la construction précédente : lorsque ’on se donne
un polygone avec appariements de faces tels que les cycles soient d’angles divisant 2/, ces
appariements engendrent un groupe fuchsien.

Théoréme 3.4.10 (de Poincaré). Soit D un polygone compact de cotés cy,- - , copn avec
un appariement de faces (o, (7Vi)1<i<on) tel que Uangle de chaque cycle divise 2w. Alors
le groupe engendré par les ; est fuchsien, de présentation

1 q C o 27
Yi | Yoy =1 et ('y&z(i) 0---0 ’yi> =1 pour chaque sommet s; ot l'angle du cycle est —
q
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Figure 3.7: Le stabilisateur de s;

Preuve: On considére le groupe abstrait G de présentation
1 4q L1 2w
a; | Aoy = a; ~ et (CL&Z(Z‘) 0---0 ai) =1 pour chaque sommet s; ol 'angle du cycle est —
q

On veut montrer que I' est une représentation de G et que D est un polygone fondamental
pour I' (ce qui implique la discrétude). pour cela, on construit un espace combinatoire de
pavage. En effet, soit H = D x G sur lequel on met la relation d’équivalence engendrée
par (p,g) ~ (p',g') si et seulement s'il existe i tel que p = v;p’ et ¢’ = ga; *. On note
H* = H/ ~. On munit H* de la topologie quotient. Une base d’ouverts est donné par

1. Les boules contenues dans I'intérieur d’une copie D x {g} de D.

w
,// L -

Figure 3.8: Premier type d’ouverts de H*

2. L’union des deux demi-boules de mémes rayons, I'une dans D x {g} centrée en un
point (p, g), p étant dans le bord de D mais sans étre un sommet; et 'autre dans
D x {gagl} centrée en (y;p, ga;l).
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Figure 3.9: Deuxiéme type d’ouverts de H*

3. L’union de toutes les boules de mémes rayons centrées en les

(S&k(i)vg |:<ac~rk(i) . ..ai) (aﬁl(i) . --ai)m}_l) pour 0 < k<!l et O

Figure 3.10: Troisiéme type d’ouverts de H*
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Cette topologie rend H* connexe. En effet, soit ¢ € G. On note I(g) sa longueur

minimale comme mot en les a;. Notons

Hy,=Dx{geG|l(g) <n}.

On raisonne par récurrence sur n. H{ est homéomorphe a D donc est connexe. On
suppose que H} est connexe. Prenons g € G de longueur n 4+ 1 que l'on écrit g = ¢'a;
oul(g’) =n. Sip € ¢, alors (p,g) ~ (vip,g’) donc la projection du connexe D x {g}
dans H} ;| intersecte le connexe H}. Ils sont donc dans la méme composante connexe.

Et ceci est vrai pour tout élément de longueur n + 1.

D’autre part G agit sur H par g- (p,g') = (p, gg’) et cette action passe au quotient
sur H*. D’aprés la proposition précédente, les relations de G sont vérifiées par I' (on n’a
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pas utilisé le fait que D est un polygone de Dirichlet pour montrer cela). On a donc un

morphisme de groupes
r: G — T
a; —— Y

et on peut définir une application

j: H — H?
(p,9) — r(9)p

Alors j descend en une application j* de H* dans H?. En effet, soit (p, g) et (p/, ¢’) deux
points équivalents : il existe i tel que p’ = y;p et ¢’ = gai_l. Alors

/

iw.g) =rg")w =r(g); vip =r(g)p = jp.9).

On vérifie ensuite que j* est un homéomorphisme local. Ce n’est pas difficile avec la
liste des ouverts décrits précédemment.

1. Voir figure 3.11

Figure 3.11: Premier type d’ouverts de H*

2. Voir figure 3.12
3. Voir figure 3.13

On voit facilement que j* est propre. Ainsi j* est un revétement ref exo donc un
homéomorphisme puisque H? est simplement connexe et H* connexe.

e Son injectivité montre que ker(r) est trivial donc I' est isomorphe a G.

e G agissant sur H*a clairement D x {1} comme domaine fondamental donc D est
un domaine fondamental de I' agissant sur H?2.

O

3.5 Géométrie des groupes fuchsiens

3.5.1 Groupes géométriquement finis

Nous voulons définir I'aire d’une variété hyperbolique H"/T" comme 'aire d’un domaine
fondamental. Cette définition est justifiée par le lemme suivant
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Figure 3.12: Deuxiéme type d’ouverts de H*

Définition 3.5.1. Soit I' un groupe fuchsien agissant sur H?. Si Uaire hyperbolique
d’un domaine fondamental D de I est finie, alors tous les domaines fondamentaux sont
d’aires finies et toutes ces aires sont les mémes.

Preuve: A faire. O
Définition 3.5.2. Soit I' un groupe fuchsien. On dit que

o T est un réseau si laire hyperbolique de l’espace quotient H? /T est finie.

e En particulier, on dit que T' est un réseau cocompact si H2 /T est compact

On montrera par la suite que le deuxiéme point est bien un cas particulier du premier
car I' admet alors un domaine fondamental compact.

Définition 3.5.3. On dit qu’un groupe fuchsien est géométriquement fini s’il admet un
domaine de Dirichlet avec un nombre fini de cotés.

Théoréme 3.5.4 (de Siegel). Un réseau est géométriqguement fini.

Preuve: On montre que n'importe quel domaine de Dirichlet D), est fini. Les sommets
d’un domaine de Dirichlet sont isolés car il est localement fini donc tout compact K de
H? contient un nombre fini de sommets d’un domaine de Dirichlet. Cela traite déja le
cas ot D, est compact. Dans le cas général, 'argument est basé sur le lemme suivant.

Lemme 3.5.5.
S —w) < p(Dy) + 2

w

ot la somme est prise sur tous les sommets de D, dans H?2.
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Figure 3.13: Troisiéme type d’ouverts de H*

Preuve: On note 9D la partie du bord de D dans H?. On remarque que 9D n’est
pas forcément connexe (si D a des points a 'infini par exemple). On joint p & chaque
sommet aj par une géodésique Ag.

Figure 3.14: Les notations

On obtient une famille de triangles Ay, d’angles ayg, B et v,. On note aussi wy 'angle
entre Ay et Agy1, i.e wy = Bk +7k+1. Lorsque D se disconnecte, on fait les ajustements
de notation évidents (par exemple on note le dernier sommet d’une composante connexe
ay, et le premier de la suivante aj, avec v, = ;. et on identifie a;, et a},)

Pour l'instant on sait que le nombre de sommets est au plus dénombrable. Ainsi,
notons -+, m, -+ ,Np, -+ la suite des sommets (le cas ou la suite est borné dans une
direction est similaire et plus simple). D’aprés le théoréme de Gauss-Bonnet (ref ), on a

u(Ag) =7 — ag — B — Y-
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D’ou,
n n n—1
Do+ Y A =T =Y = But Y (T—wi) ()
k=m k=m k=m

Le membre de gauche est borné par une constante indépendante de n et m car > ) ap <
2met > p_ . p(Ag) < p(D){+oo. Puisque les suites 7, et 5, sont aussi bornées, on en
déduit que ZZ;; (m — wy) converge (en tant que suite double), puis donc que 7, et
Bn convergent (fixer 'une des deux variables puis faire tendre I'autre vers I'infini). No-
tons v_oo = liMyn oo Ym €t Bso = limn — 00f8,. On veut maintenant montrer que
T — Yoo — PBoo = 0. Seul un nombre fini de ay est a distance inférieure & R de p (car
D est localement fini). On en déduit que a — oo et donc que d(p, ag+1))d(p, ar) pour
une infinité de valeurs de k. Pour ces indices k, on a 7)fBk (loi du sinus). Et, puisque
Br+ v <, 0on a B < 5 et de méme, v, < 5. On passe enfin a la limite dans 1'égalité

(%) et on obtient
[e.9] [e.o] (0.9)

DTkt > pAr) =+ D (m—w)

k=—o00 k=—o00 k=—o00

et le membre de gauche est bien inférieur a 2w + (D).
O

Soit maintenant ¢ un sommet et a' = a, az, -+, a™ la suite des sommets congruents

(il n’y en a qu'un nombre fini car 'orbite de I' est discréte; en effet sinon la suite des
angles aux sommets du cycle tend vers 0 car la somme est bornée et on trouve une suite
qui s’accumule en tournant autour de a). On note w* I'angle en a'. Ainsi, on a

o w4 .- 4+ w" =27 sian’est pas fixé par un elliptique ou

1 n __ 2w / N )
o w + - +w"= 2" sia est fixé par un elliptique d’ordre m.
Dans le premier cas, puisque wi<7r, on an = 3 puis

n

Z (m —wk) = (n— 2)m)m.

k=1
Cela borne le nombre de cycles elliptiques du premier cas. Dans le second cas,

n

S (r—wp) = (n— =)

m
k=1

Sim > 3, on obtient Y, (7 —wy))§ donc il ne peut y avoir qu'un nombre fini de
cycles dont 'ordre des elliptiques associés est supérieur ou égal a 3. Enfin, chaque point
fixe d’elliptique d’ordre 2 est sur un segment de D et est donc entre deux sommets qui
ne sont pas fixés par des elliptiques d’ordre 2. On conclut que les cycles constitués de
points fixes d’elliptiques d’ordre 2 est aussi fini (d’ailleurs il n’y a qu’un seul sommet par
cycle).

Puisque chaque sommet de D dans H? appartient & un cycle, la conclusion de tout
ceci est qu'un n’existe qu’un nombre fini de sommets a distance fini de p. Nous allons
terminer la preuve en montrant que le nombre de sommets & l'infini est fini lui-aussi.
Soit donc by, - -+ , by des sommets & U'infini. Il existe un polygone hyperbolique D’ bordé
par un nombre fini de géodésiques et contenu dans D dont les sommets a l'infini sont
exactement by, --- ,by.

En raisonnant comme dans le lemme, on montre que

n

S (7 —wy) = 27+ (D)

k=1
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Figure 3.15: Un sous-domaine avec des points au bord

Mais pour ces sommets, on a w = 0. D’otl
Nm=2m+ p(D') < 21 + u(D).

On conclut que N est fini O

3.5.2 Groupes fuchsiens cocompacts

L’objectif de cette section est de montrer que les groupes fuchsiens cocompacts sont
exactement ceux qui ont un (en fait tous) domaine de Dirichlet compact.

Proposition 3.5.6. Si un groupe fuchsien a un domaine de Dirichlet compact, alors il
n’a pas d’élément parabolique.

Preuve: Soit donc D un domaine de Dirichlet compact. On pose
n(z) =inf {d(z,vz) | v € I'\{e} ety n’est pas elliptique}

Les deux idées a exploiter sont que, d’une part un élément parabolique a des points qui
sont arbitrairement peu déplacés et que d’autre part, puisque les translatés de D pavent
le plan hyperbolique, la situation des points de D est la situation générale.

La fonction 7 est continue puisque l'orbite est discréte donc fermée. Pour chaque z,
n(z))0. Puisque D est compacte, n = inf {n(z), z € D} est atteint et 7)0. Puis, si z
est un point quelconque de H?, soit 7 tel que v(z) = w € D. Soit o non elliptique et
différent de id. Alors

d(z,702) = d(vz,702) = d(w,yyy 'w) =1

I n’est pas elliptique. Donc

car ¥y07~
inf {d(z,vz) | v €T\ {e} et~y n’est pas elliptique} =n > 0.

Par ailleurs, si I' contient un parabolique, sa distance de déplacement est 0, donc il existe
des points z qui sont bougés d’une distance inférieure a 7. O
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Proposition 3.5.7. 1. S5i ' admet une région de Dirichlet non compacte, alors la
variété quotient H? /T n’est pas compacte.

2. Si une région de Dirichlet est d’aire finie mais non compacte, elle a un sommet a
linfina.

Preuve: Soit D, une région de Dirichlet. On montre dans un premier temps que si D,
est non compacte, alors elle contient un rayon géodésique infini partant de p. En effet,
pour chaque direction en p, il existe une unique demi géodésique partant de p avec la
vitesse initiale donnée par cette direction.

Cette demi géodésique est soit contenue dans D, soit touche le bord dD,, en un unique
point (D, est convexe). On note I(v) la longueur du morceau de géodésique contenue
dans D, et partant de p & vitesse v. L’espace des directions est compact (c’est St et
[ est une fonction continue car le bord de D, est continu. Ainsi si [(v)({co pour tout
v, alors | est bornée et D, est compact. Donc, si D, est non compact, il existe une
demi géodésique de longueur infinie dans D). Cette géodésique reste non bornée dans le
quotient D, /T" puisque seuls les points du bord sont identifiés. ceci prouve déja le point
1.

Pour 2., on considére une direction vy qui engendre une demi géodésique infinie
contenue dans D,,. L’extrémité de cette géodésique est contenue dans 9H? N JD,. Mais,
puisque D, est d’aire hyperbolique finie, 9H? N D, est une réunion de sommets.

Figure 3.16: Une zone du plan hyperbolique d’aire infinie

O

Corollaire 3.5.8. La variété (ou orbifold) quotient d’un groupe fuchsien est compacte
si et seulement si toute région de Dirichlet est compacte.

A ce stade de notre réflexion, on peut déja constater qu’il y a une relation entre les
réseaux cocompacts et ’absence d’éléments paraboliques. On veut maintenant montrer
une réciproque et analyser 'action des paraboliques.

Théoréme 3.5.9. Soit I' un groupe fuchsien qui admet une région de Dirichlet D, (I")
d’aire finie. Alors,

1. Chaque sommet a l'infini de D), est le point fixze d’un parabolique de T'.

2. Si € est un point de OH? fixé par un parabolique de T', alors il existe o € T tel que
a(€) € D, N OH?2.

Preuve: Le point 2. est trivial (une région de Dirichlet pave). Soit b un sommet de
D, a T'infini. On considére les images de Dp, a(D,) qui ont aussi b pour sommet a
Iinfini. il y en a une infinité car I’angle en b est nul. On remarque d’ailleurs que ceci est
cohérent avec la convention des appariements de faces qui dot qu'un sommet & I'infini
a un elliptique associé qui est d’ordre infini, donc un parabolique (autrement dit, une
rotation non triviale d’angle 0 a son point fixe a 'infini).
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Soit b' = b,b?,--- ,b" les sommets congruents & b (il n’y en a qu'un nombre fini car
I' est géométriquement fini). On pose b* = 7, (b), pour k = 1,--- ,n. Chaque image de
D,, qui a b pour sommet est de la forme vvgl(Dp) ou v fixe b. Il y a donc une infinité de
tels 7. Montrons qu’ils sont tous paraboliques. Raisonnons par ’absurde et supposons
qu’un vy comme auparavant soit hyperbolique.

g

Figure 3.17: La construction

On considére une géodésique z(t) qui connecte p a b avec z(0) = p et z(o0) = b.
Puisque D,, est une région de Dirichlet (connexe), toute la géodésique z est a I'intérieur
de D, et d(p,z(t))(d(v(p),2(t)) pour tout t. On considére ensuite un horocycle en b
passant par p; on le note w(b). Puisque 7 n’est pas parabolique, v(p) n’est pas sur
I'horocycle w(b) (exo ref ). Ainsi y(p) est soit a Uintérieur de w(b) soit a 'extérieur
de w(b) selon si b est attracteur ou répulsif. On suppose que y(p) est a l'intérieur de
w(b), quitte a changer v en y~! (I'inverse d’un parabolique est aussi parabolique). Soit
maintenant z la géodésique qui relie y(p) a b. On note qq le point d’intersection de w(b)
avec x. On change ensuite l'origine du temps pour z de sorte que z(0) = ¢. Puis on
montre que d(z(t),z(t)) tend vers 0. En effet, en conjuguant, la situation devient

et on utilise les formules pour la distance :

sinh @d(x(t),z(t))) _ ‘“;f' 0.
Ensuite
t = d(p,z(t))
= d(Q? (t

= d(q,v(p)) +d(v(p),x(t))

si t est grand. Enfin, en utilisant l'inégalité triangulaire pour d(y(p), z(t)) en transitant
par x(t), on obtient,

d(p, 2(t)) = d(q,7(p)) + d(v(p), 2(t)) — d(2(t), z(2)).

En faisant tendre t vers oo, on obtient
d(p, 2(t)) > d(v(p), 2(t)),
ce qui est une contradiction. L]

Corollaire 3.5.10. Un groupe fuchsien est cocompact si et seulement si c’est un réseau
qui ne contient pas de paraboliques.
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Figure 3.18: Aprés conjugaison

3.5.3 Signature d’un groupe fuchsien

Soit I' un réseau. Le quotient H?/I" est une orbifold donc une surface topologique de
genre g. on note ni,--- ,n, les ordres des elliptiques associés aux cycles. Si un sommet
est & l'infini, on considére qu’il est seul dans son cycle avec m = co.

Définition 3.5.11. On dit alors que le groupe fuchsien a une signature (g;ni, -+ ,n;).

Théoréme 3.5.12 (Gauss-Bonnet). Soit I' un groupe de signature (g;ni,--- ,ny). Alors
le volume de la variété quotient est donné par

p(H?/T) = (29 — 2) +; (1 — ni) .

Preuve: On en donne qu’'une ébauche de preuve (qui peut étre complétée avec un peu
de topologie des surfaces). On note n le nombre de paires d’arétes identifiées dans D), et
r le nombre de cycles elliptiques.

La surface quotient a r point marqués et n arétes marquées. On découpe la surface
le long de ces n arétes. On obtient une face (simplement connexe) qui est le domaine de
Dirichlet. Ainsi la caractéristique d’Euler de la surface est

r—n+1=-—(29g—2)

d’aprés le cours de topologie des surfaces. On découpe le polygone fondamental en
triangles (dont on peut calculer Iaire en fonction des angles qui eux-mémes sont liés aux
ordres des elliptiques)!. Ce découpage permet de calculer 'aire de la surface. On trouve

w(D,) = (2n — 2)7 — 2 (Zé) =2 (2g—2+2<1—7;>>.

i=1 =1

La preuve du théoréme de Gauss-Bonnet riemannien se conduit aussi en respectant ces deux étapes
: une locale ou on calcule aire des (petits) triangles puis une globales ot on somme les informations
locales obtenues
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Figure 3.19: Calcul de la caractéristique d’Euler

O]

La réciproque de ce théoréme est donnée par une variante du théoréme de Poincaré,
dont la preuve s’adapte facilement

Théoréme 3.5.13. Soit g > 0, r > 0 et m; > 1 tous entiers (m; pouvant étre infini)

tels que
. 1
29 — 2 1-—— 0.
2-2+Y (1-2) >
=1
Alors il existe un groupe fuchsien cocompact de signature (g;ni,--- ,ny).

Remarque En analysant celle formule, Siegel a montré que le réseau de plus petit
volume est le groupe de triangle (2,3,7) (voir exo ), en particulier le réseau de plus
petit volume est cocompact. Ce résultat est faux pour les réseaux de SL,,(R) d’aprés un
résultat de Thilmany du 30/06/2017>

3.6 Exercices corrigés pour le chapitre 3

Exercice 3.1 Soit V une (G, X)-variété. Montrer que V est aussi une (G, X)-
variété.

?la veille de notre dernier cours :-)



CHAPTER 3. VARIETES HYPERBOLIQUES 86

Exercice 3.2 (Le tore est euclidien)
Montrer que le tore T" est muni d’une (R™, R™)-structure (appelée d’ailleurs structure
de translation).

Exercice 3.3 (Structure affine sur un quotient de quadrilatére)

On note A le groupe des similitudes directes du plan euclidien. On considére un
quadrilatére convexe plein non dégénéré P = ABCD. Vérifier qu’il existe une unique
similitude directe 1 qui envoie le segment orienté AB sur DC' et une unique similitude
directe 72 qui envoie AD sur BC. On note ~ la relation d’équivalence engendrée par

T~ YT sixz et vz € P, pouri=1,2.

Vérifier que P/ ~ est muni d'une (A, R?)-structure. On note I' le groupe engendré par
v1 et 2. A quelle condition sur v; et 79 le groupe agit-il librement et discontintiment ?

Exercice 3.4

Facultatif, utilise des notions de géométrie riemannienne.
On suppose que X est munie d’une métrique riemannienne et que G agit par isométries
sur X. On suppose aussi que X est simplement connexe. Soit V' une (G, X)-structure
compacte. Le but de cet exercice est de montrer que V' est compléte.

1. Montrer que V et V sont munis de métriques riemanniennes de sorte que D : V —
X est une isométrie locale.

2. Montrer qu'il existe € tel que, pour tout y € V, la restriction de D & B(y,e) est
une isométrie.

3. En déduire que D est un revétement puis que D est un homéomorphisme.
Exercice 3.5 Quels sont les sous-groupes discrets de R et S! ?

Exercice 3.6 Soit I' un sous-groupe cyclique (fini ou non) de PSLy(R). Trouver
des conditions nécessaires et suffisantes pour que I' soit fuchsien.

Exercice 3.7 Montrer qu’'un groupe kleinien est dénombrable.

Exercice 3.8 Sil est un groupe kleinien, montrer que les points fixes des elliptiques
de T" ne peuvent pas s’accumuler.

Exercice 3.9

1. Lemme du ping-pong. Soit I' un groupe agissant sur un ensemble X et soit I'; et
I’y deux sous-groupes de I" (les joueurs de ping-pong) tels que I'y et I'y engendrent
I'. On suppose qu’il existe deux parties X; et Xy non vides de X (la table de
ping-pong) avec X5 non inclue dans X et avec

’)/(XQ) Cc Xi V’y S Pl\ {1}
’)/(Xl) C Xy V’)’ S F2\ {1}
On suppose aussi que I'; contient au moins 3 éléments. Montrer que I' = I'y * I's.

2. Groupes de Shottky Soit a et 8 deux hyperboliques de H? tels qu’il existe des
régions disjointes A, A_, By et B_ de H? avec a(H?\A_) C A} et S(H?\B_) C
B, . Montrer que « et 5 engendrent un groupe libre de PSLy(R) et que ce groupe
est discret.
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Exercice 3.10 Dans certains livres de géométrie hyperbolique, on propose souvent
une définition différente, plus générale, de groupes kleiniens qui est plus adaptée a I’étude
de la dynamique du groupe sur le bord & 'infini de 'espace hyperbolique. Cette série a
pour but d’introduire cette définition et de montrer son utilité. On se place en dimension
3 et soit I' € PSLy(C). On note €’ = Q'(T") Pensemble des points z € C tels que I'action
de T en z est libre et discontinue (c’est-a-dire qu’il existe un voisinage ouvert U de z
tel que {y e T'y(U)NU # 0} = {e}). On note encore Q@ = Q(T') I'ensemble des points
z € C tels que l'action de T' en z est discontinue (c’est-a-dire qu'il existe un voisinage
ouvert U de z tel que {y € I'v(U)NU # 0} est fini). En dynamique, on dit que €’ est

A~

I’ensemble des points errants pour 'action de I' sur C.
Définition : On dit qu'un groupe I' est kleinien si /(T") #£ 0.

1. Préliminaire sur les cercles isométriques.

Soit v € PSLa(C) tel que y(o0) # oo. Alors

(a) Il existe un unique cercle C' tel que v(C) et C sont isométriques (pour la
métrique euclidienne de C. On dit que C est le cercle isométrique de «y (voir
aussi la série 1).

(b) Soit r l'inversion de cercle C. Alors il existe une isométrie euclidienne u tel
que 7y = ur.

Indication : Soit C le cercle isométrique de y (de centre ), C' celui de v~!

(de centre ). Si on pose o la symétrie d’axe la médiatrice de [a, '] et v la
rotation autour de «, on vérifiera que vy = our.

2. Généralités.

(a) Montrer que Q et €' sont des ouverts I'-invariants.

(b) Montrer que si I' est kleinien alors I' est dénombrable.

Indication : 1l suffit de trouver une famille sommable indexée par T.
(¢) Montrer que Q'(T")/T est séparé.
(d) Montrer qu’un groupe kleinien est discret.

(e) Pour montrer que la réciproque est fausse, on pourra considérer le groupe I' =
PSLy(Z[i]) et faire 'observation suivante : si o € C est fixé par un parabolique
ou un hyperbolique, alors « ¢ €.

3. Ensembles limites.

Définition : Soit I" un groupe kleinien. Un point o € C est un point limite de I
si a est un point d’accumulation d’une orbite I' - z ou z € Q'(T") (i.e il existe un
point z € (') et une suite injective (7,), C I telle que v,(z) — «). On note
A(T) ensemble des points limite de T.

(a) On veut montrer dans un premier temps un résultat de convergence plus fort
qu'une convergence ponctuelle. Prenons o € A et (v,) et z comme dans la
définition. On veut montrer qu’il existe un point « tel que la convergence de
Yn(z) vers o est en fait uniforme sur les compacts de C\ {a}.

i. Montrer qu’on peut supposer z = oo.
ii. Montrer qu’il existe R > 0 tel que v ({|z] > R}) N {|z| > R} = 0. Posons
Cr ={lz| = R}.
iii. Montrer que le rayon p, de v,(Cr) tend vers 0.
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iv. Soit R, le rayon du cercle isométrique de 7,. En ayant auparavant montré
que Rp, = R%, montrer que R, tend vers 0.
v. Quitte & extraire on peut poser a = lim~,, *(cc). Conclure.

(b) Soit maintenant (7,) une suite injective. Montrer qu’il existe une sous-suite
(Vny,) €t o, o/ € A(T) tel que ,, converge vers ¢/ uniformément sur les

A~

compacts de C\ {a}.
(¢) Soit I' un groupe kleinien. A I’aide de ce résulat de convergence, montrer les
points suivants

i. Le bord de I'espace s’écrit comme réunion disjointe C = A(T") U Q(T).
ii. A(T) est un fermé I'-invariant et nulle part dense (i.e A(T") = 0).

iii. Q\Q est discret dans dans €.

iv. Q et € sont denses dans C.

v. Si A a plus de trois éléments, alors A n’a pas de points isolés. En par-
ticulier, il est non dénombrable. Par exemple, c’est un Cantor ou un
quasi-cercle.

En dimension 2, pour un groupe discret en général, on peut montrer avec des
arguments similaires 1’alternative suivante

e Soit I’ensemble limite a un ou deux éléments,

e Soit ¢’est un Cantor,

e Soit c’est la sphére toute entiére.

Exercice 3.11 (Groupes de triangles)

1. Soit ki, ko et k3 trois entiers tels que % + ,%2 + é < 1. Montrer qu’il existe un
triangle hyperbolique d’angles ﬁ, k% et 1373 Notons le ABC.

2. Montrer que le groupe engendré par les réflexions (les inversions) d’axes (AB),
(AC) et (BC) forme un groupe discret. Donner une présentation du sous-groupe
d’indice 2 engendré par les isométries directes. En donner un domaine fondamental.
Quel est son aire ?

3. (Facultatif) En utilisant le théoréme de Selberg (voir wikipédia), montrer que tout
groupe triangulaire admet un sous-groupe de surface compacte d’indice fini. Pour
k1, ko et ks explicites, déterminer un tel sous-groupe.

Exercice 3.12 (Classification des sous-groupes élémentaires)
Soit G un groupe élémentaire de PSLo(C) et soit {x1,- -, x,} une orbite finie de G.
Montrer le théoréme de classification suivant

1. Sin >3 ousi{x, - ,z,} C H3 alors tous les éléments de G sont elliptiques et
G est conjugué a un sous-groupe de SO3(R).

2. Sin=1et {x1} C C, alors G est conjugué a un sous-groupe du groupe affine.

3. 8in=2et {x,22} C C, alors G est conjugué & un sous-groupe du groupe des
transformations 2z — az, 2 — %, a € C*.
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Exercice 3.13 (Une propriété des sous-groupes non élémentaires)

On veut montrer le résultat suivant : si I' est un groupe non élémentaire de PSLa(C),
alors il existe une famille infinie d’éléments hyperboliques (;) telle que si i # j, alors
F. Yi NFE Vi = Q)

1. Montrer que I' contient un hyperbolique.

2. Soit donc v un élément hyperbolique avec F, = {«,3}. Puisque I' n’est pas
élémentaire, il existe 7/ qui ne fixe pas a et 3. On distingue alors deux cas.

(a) Si {a, B} N {7 (a),¥(B)} = 0, on pose 1 = vy L. Montrer que la suite
Yn = Y"*y1y" " convient.

(b) Si~; et 7y, ont un point fixe en commun «, alors m = [;,7] est parabolique
et il existe 7" tel que 7"(a) # a. Posons 7/ = 4"7y"~1. Montrer alors que
soit v, = 7"y’ soit «y,, = 7'My’ convient.

Exercice 3.14 (Une application de théoréme de Poincaré)
Trouver une présentation de PSLy(Z).

Exercice 3.15 (Encore un théoréme de classification des isométries)

1. Rappeler encore une fois la définition de cercle isométrique C'(7y) d’une isométrie
2
~v de H-.

2. Soit v €PSLy(R). Montrer que

(a) v est hyperbolique si et seulement si C(v) et C(y~!) ne s’intersectent pas.
(b) 7 est elliptique si et seulement si C(vy) et C(y~1) s’intersectent.
(c) 7 est parabolique si et seulement si C(v) et C(y~1) sont tangents.

Exercice 3.16 (Les paraboliques stabilisent les horocycles)
Soit v un élément de PSLy(RR) qui fixe un point s € S'. Montrer que v est parabolique
si et seulement si, pour chaque horocycle passant par s, w(s), on a y(w(s)) = w(s).

Exercice 3.17 (Variétés a cusps)

Soit I" un réseau non cocompact et D un domaine de Dirichlet pour I'. Montrer
qu’il existe y a une correspondance bijective entre les classes de congruences de points a
I'infini de D et les classes de conjugaison de sous-groupes paraboliques maximaux de I'.
Ce nombre s’appelle le nombres de cusps (ou cuspides) de la variété T'\H?. Demander &
I’assistant de faire des dessins.

Corrigés des exercices (ou référence)
Exercice 3.1
Exercice 3.2
Exercice 3.3
Exercice 3.4

Exercice 3.5
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Exercice 3.6
Exercice 3.7
Exercice 3.8
Exercice 3.9
Exercice 3.10
Exercice 3.11
Exercice 3.12
Exercice 3.13
Exercice 3.14
Exercice 3.15

Exercice 3.16
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Exercice 3.17
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