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Introduction

Ce texte constitue les notes d’un cours donné à l’École Polytechnique Fédérale de
Lausanne au printemps 2017. Le contenu est adapté aux étudiants de Master qui ont déjà
suivi un premier cours de géométrie différentielle 1 et qui sont à l’aise avec les concepts
de base de l’algèbre linéaire, ainsi qu’avec quelques notions plus avancées d’algèbre bil-
inéaire. En revanche, nous n’utiliserons pas (sauf en une exception) la théorie générale
de la géométrie riemannienne. Bien que la géométrie hyperbolique soit l’un des pre-
miers exemples, expliquons pourquoi ce n’est pas indispensable et en quoi les méthodes
exposées ici différent des méthodes riemanniennes.

La géométrie hyperbolique est un espace métrique, où la métrique est un espace de
longueur (on mesure la distance entre deux points comme la plus petite longueur de
courbe qui joint ces deux points). Dans cette situation, la géométrie riemannienne se
propose de développer une série d’outils de nature différentielle, par l’intermédiaire de
champs de tenseurs sur la variété, obtenus en dérivant la métrique. Les résultats de
la théorie consistent à interpréter géométriquement (ou au moins topologiquement) le
comportement de ces tenseurs. Ici, notre point de vue est bien différent et beaucoup
plus algébrique. En effet, ce qui singularise la géométrie hyperbolique et ce qui lui donne
toute sa richesse, c’est la taille de son groupe d’isométries : la distance hyperbolique a
énormément d’isométries.

Comparons, par exemple, la taille du groupe des isométries euclidiennes et des
isométries hyperboliques. Cette comparaison peut être rendue possible par l’intermédiaire
du bord des deux espaces (hyperboliques et euclidiens) : dans les deux cas, c’est une
sphère. C’est un fait que les isométries peuvent se prolonger au bord (elles sont unifor-
mément continues sur un ensemble dense) et elles déposent donc une certaine géométrie
sur ce bord. La géométrie déposée par la structure euclidienne est la géométrie usuelle
de la sphère, celle qui provient de son plongement canonique dans l’espace euclidien.
La géométrie qui lui vient de l’espace hyperbolique est la géométrie conforme. Une
transformation est dite conforme si elle préserve les angles. Autrement dit, les isométries
euclidiennes préservent une distance sur la sphère tandis que les isométries hyperboliques
ne préservent que les angles, ce qui est plus souple.

Cela explique pourquoi la stratégie employé dans ce cours consiste tout d’abord à
montrer que le groupe des isométries est suffisamment transitif sur un certain nombre
d’objets associés à la géométrie (sur l’espace lui-même, sur son bord, sur les géodésiques,...)
puis à commencer les preuves par la remarque suivante :

Quitte à faire agir le groupe, on peut supposer que ...

...On peut supposer que la situation est explicite et plus simple.
Cette propriété remarquable de la géométrie hyperbolique pourrait laisser penser qu’il

s’agit d’une géométrie exceptionnelle, anecdotique. En réalité, ce n’est pas le cas, c’est
même en fait la géométrie la plus fréquente, la plus générique. Pour tenter de justifier

1En fait, seule la définition de variété différentiable sera utilisée
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cette assertion, regardons le cas des surfaces. Rappelons que les surfaces compactes
connexes et orientables sont classifiées topologiquement et qu’elles constituent la famille
(Σg)g>0 où Σg est la somme connexe de g tores (par convention Σ0 est la sphère).

Figure 1: Classification topologique des surfaces

Il existe trois géométries classiques (qui correspondent aux trois géométries de cour-
bure constante) : la géométrie sphérique, euclidienne et hyperbolique et on peut se de-
mander s’il existe des métriques sur les surfaces Σg qui les rendent localement isométriques
à l’un de ces trois espaces. Le théorème suivant illustre la généricité de la géométrie hy-
perbolique.

Théorème.

1. Sur chaque surface, il existe une métrique et une et une seule des trois géométries
qui lui est localement isométrique.

2. Sur la sphère Σ0, il s’agit de la géométrie sphérique, sur le tore Σ1, il s’agit de la
géométrie euclidienne et sur toutes les autres surfaces Σg avec g > 2, il s’agit de
la géométrie hyperbolique.

Le fait que l’une des géométries exclue les deux autres est une conséquence du
théorème de Gauss-Bonnet. Le fait que les surfaces de genre g > 2 admettent une
métrique localement hyperbolique provient d’une construction explicite que nous ver-
rons plus loin dans ce texte. Ce théorème est aussi une conséquence de l’uniformisation
des surfaces de Riemann.

Une première motivation à l’étude de la géométrie hyperbolique est donc son om-
niprésence. Une seconde motivation est de nature historique. En effet la géométrie
hyperbolique ne satisfait pas au cinquième axiome d’Euclide : étant donné une droite et
un point extérieur à cette droite, il existe une infinité de droites parallèles passant par
ce point. Elle répond donc (par la négative) aux nombreuses tentatives de preuves du
cinquième postulat d’Euclide à partir des autres.

À ce stade de l’introduction, le lecteur aura bien compris que notre objectif est
d’explorer la géométrie hyperbolique. Mais qu’en est-il des groupes discrets et comment
ces deux sujets sont-ils reliés ? C’est que, dans une seconde partie de ce texte, nous
nous intéressons aux variétés hyperboliques, c’est-à-dire aux variétés différentiables qui
sont obtenues en recollant des morceaux de l’espace hyperbolique (nous avons déjà vu
par exemple que l’on peut obtenir toute surface de genre g > 2 de cette manière). Nous
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montrerons alors un résultat qui affirme que toute variété hyperbolique est obtenue
comme le quotient de l’espace hyperbolique par un sous-groupe discret de son groupe
des isométries. Il y a donc une correspondance bijective

{variété hyperbolique} ←→ {Γ ⊂ Isom(Hn) discret} .

L’espace hyperbolique est donc le "modèle local" des variétés hyperboliques, ou, pour
le dire avec la terminologie du chapitre 2, leur revêtement universel. C’est encore une
fois la taille du groupe d’isométries qui donne toute sa richesse à la théorie : plus il
y a d’isométries, plus il y a de groupes discrets. Reconsidérons une dernière fois la
trichotomie sphérique, euclidienne et hyperbolique. Les groupes discrets d’isométries
de la sphère sont des groupes finis, les groupes discrets d’isométries euclidiennes sont
classifiés par le théorème de Bieberbach tandis qu’une classification des groupes discrets
d’isométries hyperboliques semble inaccessible avec les outils actuels 2.

Ce document s’organise alors de la façon suivante. Le premier chapitre concerne
la géométrie hyperbolique proprement dite, avec une certaine emphase pour les dimen-
sions 2 et 3. Le second chapitre, bien que d’un intérêt indépendant, consiste à mettre
en place les préliminaires topologiques pour établir cette correspondance groupes dis-
crets/variétés. Le dernier chapitre s’attaque à l’étude des groupes discrets d’isométries,
en tachant de faire fonctionner ce dictionnaire entre les propriétés algébriques du groupe
et les propriétés géométriques du quotient.

La rédaction de ce cours a grandement bénéficié des nombreuses discussions avec
Adrien Marcone, lors des (interminables) séances de préparation des exercices. Je tiens
à l’en remercier vivement. Toute erreur ou imprécision ne pourrait cependant pas lui
être reprochée.

2On peut néanmoins constater des progrès spectaculaires obtenus avec les techniques de théorie
géométrique des groupes ref



Contents

1 La géométrie hyperbolique 6
1.1 Une étude préliminaire : le groupe de Möbius de la sphère . . . . . . . . . 6

1.1.1 Reflexions à travers des hyperplans . . . . . . . . . . . . . . . . . . 6
1.1.2 Réflexions à travers des sphères . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Compactification d’Alexandrov de Rn . . . . . . . . . . . . . . . . 8
1.1.4 Groupe de Möbius de la sphère . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Extensions de Poincaré . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Différents modèles de la géométrie hyperbolique . . . . . . . . . . . . . . . 8
1.2.1 Le demi-espace supérieur . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 La boule de Poincaré . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 L’hyperboloïde et le modèle projectif . . . . . . . . . . . . . . . . . 11
1.2.4 Équivalence entre les modèles . . . . . . . . . . . . . . . . . . . . . 13

1.3 Géométrie des espaces hyperboliques . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Le groupe des isométries de Hn . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Distances hyperboliques et géodésiques . . . . . . . . . . . . . . . . 18
1.3.3 Bord à l’infini de l’espace hyperbolique . . . . . . . . . . . . . . . . 24
1.3.4 Classification individuelle des isométries . . . . . . . . . . . . . . . 24

1.4 Quelques précisions supplémentaires en dimensions 2 et 3 . . . . . . . . . 26
1.4.1 Géométrie du plan hyperbolique . . . . . . . . . . . . . . . . . . . 26
1.4.2 Géométrie hyperbolique en dimension 3 . . . . . . . . . . . . . . . 31

1.5 Exercices corrigés pour le chapitre 1 . . . . . . . . . . . . . . . . . . . . . 33

2 Intermède : Groupe fondamental et revêtements 42
2.1 Groupe fondamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Revêtements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2 Actions de groupes topologiques . . . . . . . . . . . . . . . . . . . 47
2.2.3 Relèvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.4 Action du groupe fondamental de la base sur la fibre . . . . . . . . 50
2.2.5 Revêtement universel . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.6 Théorie de Galois des revêtements . . . . . . . . . . . . . . . . . . 54

2.3 Exercices corrigés pour le chapitre 2 . . . . . . . . . . . . . . . . . . . . . 56

3 Variétés hyperboliques 59
3.1 Qu’est-ce qu’une variété hyperbolique . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 (G,X)-structure ou structure géométrique . . . . . . . . . . . . . . 60
3.1.3 Développante et holonomie . . . . . . . . . . . . . . . . . . . . . . 61
3.1.4 Complétude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Groupes kleiniens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Groupes élémentaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Préliminaire sur les points fixes . . . . . . . . . . . . . . . . . . . . 66

4



CONTENTS 5

3.3.2 Sous-groupes élémentaires de PSL2(C) . . . . . . . . . . . . . . . . 67
3.3.3 Sous-groupes discrets élémentaires . . . . . . . . . . . . . . . . . . 70

3.4 Régions fondamentales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.1 Pavage et présentation . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Géométrie des groupes fuchsiens . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.1 Groupes géométriquement finis . . . . . . . . . . . . . . . . . . . . 77
3.5.2 Groupes fuchsiens cocompacts . . . . . . . . . . . . . . . . . . . . . 81
3.5.3 Signature d’un groupe fuchsien . . . . . . . . . . . . . . . . . . . . 84

3.6 Exercices corrigés pour le chapitre 3 . . . . . . . . . . . . . . . . . . . . . 85



Chapter 1

La géométrie hyperbolique

1.1 Une étude préliminaire : le groupe de Möbius de la
sphère

Avant d’attaquer l’étude de la géométrie hyperbolique, nous commençons par un pe-
tit échauffement sur le groupe des transformations de la sphère qui préservent les an-
gles. Nous montrerons ensuite que ce groupe est exactement le groupe des isométries
de l’espace hyperbolique. Ce point de vue est important pour certaines propriétés de la
géométrie hyperbolique.

1.1.1 Reflexions à travers des hyperplans

Ces transformations sont probablement déjà bien connues. Notons En l’espace euclidien
de dimension n, c’est-à-dire Rn muni de sa métrique euclidienne usuelle (‖x‖2 =

∑n
i=1 x

2
i )

puis
P (a, t) = {x ∈ En | a · x = t}

où a est un vecteur de norme 1 et · est le produit scalaire usuel obtenu par polarisation
de ‖·‖. L’ensemble P (a, t) est l’hyperplan affine dont un vecteur normal est a et passant
par le point ta.

La réflexion à travers l’hyerplan P (a, t) est l’application ρ définie par

ρ(x) = x+ 2(t− a · x)a

Les propriétés suivantes des réflexions sont bien connues (ref ).

Théorème 1.1.1. Soit ρ une réflexion dans un hyperplan P (a, t)

1. Un point x est fixé par ρ si et seulement si x ∈ P (a, t).

2. ρ est une involution.

3. ρ est une isométrie.

4. Inversement le groupe des isométries affines de En est engendré par les réflexions
à travers les hyperplans

1.1.2 Réflexions à travers des sphères

Pour un point a ∈ En et un réel positif r, on note S(a, r) la sphère ce centre a et de
rayon r, c’est-à-dire l’ensemble

S(a, r) = {x ∈ En | |x− a| = r} .

6



CHAPTER 1. LA GÉOMÉTRIE HYPERBOLIQUE 7

La réflexion (ou l’inversion) σ à travers la sphère S(a, r) est définie par la condition

σ(x) = a+ s(x− a)

avec s un réel positif tel que

|σ(x)− a| · |x− a| = r2.

Cela conduit à l’expression de σ

σ(x) = a+

(
r

|x− a|

)2

(x− a)

Figure 1.1: Comment construire l’image d’un point par une inversion

Le théorème suivant est l’analogue du précédent pour des réflexions à travers des
sphères.

Théorème 1.1.2. Soit σ une réflexion dans une sphère S(a, r). Alors

1. σ(x) = x si et seulement si x ∈ S(a, r).

2. σ2(x) = x pour tout x 6= a.

3. Pour x et y différetents de a,

|σ(x)− σ(y)| = r2 |x− y|
|x− a| |y − a|

Preuve: 1. Si σ(x) = x, alors, compte tenu de |σ(x)− a| · |x− a| = r2, on obtient
|x− a| = r. Inversement, si |x− a| = r, la formule explicite montre que σ(x) = x.

2.

σ2(x) = a+

(
r

|σ(x)− a|

)2

(σ(x)− a)

= a+

(
|x− a|
r

)2( r

|x− a|

)2

(x− a)

= x
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3.

|σ(x)− σ(y)| = r2

(
(x− a)

|x− a|2
− (y − a)

|y − a|2

)
= r2

(
1

|x− a|2
− 2(x− a) · (y − a)

|x− a|2 |y − a|2
+

1

|y − a|2

)1/2

=
r2 |x− y|
|x− a| |y − a|

Le fait que le point a joue un rôle particulier dans l’expression de de σ (il est envoyé
à l’infini) nous amène à rajouter à l’espace En un point de sorte que σ devienne une
bijection sur le nouvel espace. C’est l’objectif du paragraphe suivant.

1.1.3 Compactification d’Alexandrov de Rn

On identifie En à En × {0} dans En+1. La projection stéréographique de En sur
Sn\ {en+1} est définie en projetant x ∈ En sur le point π(x) de la sphère Sn qui rencontre
la droite passant par x et en+1.

Les conditions π(x) = x + s(en+1 − x) et |π(x)|2 + 1 (d’où l’on déduit s = |x|2−1

|x|2+1
)

permetten d’obtenir l’expression

π(x) =

(
2x1

|x|2 + 1
, · · · , 2xn

|x|2 + 1
,
|x|2 − 1

|x|2 + 1

)

1.1.4 Groupe de Möbius de la sphère

Il est conforme, transitif sur les sphères de Sn−1

1.1.5 Extensions de Poincaré

1.2 Différents modèles de la géométrie hyperbolique

Notre première tâche est de définir la géométrie hyperbolique. Nous donnons plusieurs
définitions, qui correspondent à plusieurs "modèles" et nous montrons ensuite que ces
points de vue sont équivalents. Il est commode de disposer de plusieurs incarnations de
la géométrie hyperbolique, chacune d’entre elles servira à mener l’étude d’un aspect bien
particulier de la géométrie. Par exemple, le modèle de l’hyperboloïde nous permettra de
trouver le groupe des isométries; le modèles du demi-espace privilégie un point à l’infini
tandis que celui de la boule privilégie un point à l’intérieur de l’espace hyperbolique.
Compte tenu de la transitivité du groupe, ces deux modèles rendent explicites beaucoup
de situation génériques.

1.2.1 Le demi-espace supérieur

On note Un l’ouvert de Rn défini par

Un = {(x1, · · · , xn) ∈ Rn tel que xn > 0} .

On veut maintenant munir cet ensemble d’une métrique. En tant qu’ouvert de Rn, Un
une variété différentiable, dont chaque espace tangent s’identifie naturellement au même
espace Rn :

∀x ∈ Un, TxUn = Rn.
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Sur chacun de ces tangents, on définit une norme. En effet, pour x ∈ Un et v =
(v1, · · · , vn) ∈ TxUn,

‖v‖2x =

∑n
i=1 v

2
i

x2
n

.

Avec cette famille de norme, on peut mesurer la longueur des courbes.

Définition 1.2.1. Soit γ : [a, b] → Un une courbe de classe C1 par morceaux. Alors la
longueur de γ est donnée par

L(γ) =

∫ b

a

∥∥γ′(t)∥∥
γ(t)

dt =

∫ b

a

√∑n
i=1 γ

′
i(t)

2

γn(t)
dt

Soit p et q deux points de Un. Dans la suite, on notera Cp,q l’ensemble des chemins
de classe C1 par morceaux γ : [a, b]→ Un tels que γ(a) = p et γ(b) = q.

On obtient enfin une notion de distance sur Un (qu’on appelle en général un espace
de longueur associé à la famille de normes (‖·‖x)x∈Un) en mesurant la longueur "plus
petite courbe" qui joint deux points donnés.

Définition 1.2.2. Pour p et q deux points de Un, on note

d(p, q) = inf
γ∈Cp,q

L(γ).

Proposition 1.2.3. d est bien une distance sur Un.

On dira alors que (Un, d) est le modèle du demi-espace supérieur de la géométrie
hyperbolique.

Preuve: • La symétrie de d est évidente puisqu’il y a une bijection entre Cp,q et
Cq,p en parcourant les chemins en sens inverse.

• On considère trois points p, q et r. Soit alors ε > 0 et soit γ1 un chemin qui joint
p à q de longueur d(p, q) + ε et un chemin qui joint r à q de longueur d(r, q) + ε.
Quitte à reparamétrer, on peut supposer que γ1 et γ2 sont définis sur [0, 1]. On
considère la courbe γ (qui joint p à q et définie par

γ(t) =

{
γ1(2t) si 0 6 t 6 1/2
γ2(2t− 1) si 1/2 6 t 6 1

Alors d(p, q) 6 L(γ) 6 d(p, r) + d(r, q) + 2ε.

• Le point le plus délicat consiste en fait à voir que d s’annule uniquement si les points
sont les mêmes. Supposons donc que d(p, q) = 0 et, pour ε > 0 fixé, choisissons une
courbe γε de Cp,q de longueur L(γε) 6 ε. PosonsMε = supt∈[0,1] γε,n(t). La stratégie
consiste maintenant à borner Mε (c’est le nombre qui sert de comparaison entre
la situation hyperbolique et la situation euclidienne) puis à traiter le cas euclidien.
Clairement Mε > pn. Pour majorer Mε, remarquons déjà que le sup est un max
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par continuité : il existe donc b ∈ [0, 1] tel que Mε = γε,n(b). Puis, on a

ε > L(γε)

> L(γε|[0,b])

=

∫ b

0

√∑n
i=1 γ

′
ε,i(t)

2

γε,n(t)
dt

>
∫ b

0

∣∣γ′ε,n(t)
∣∣

γε,n(t)
dt

>

∣∣∣∣∫ b

0

γ′ε,n(t)

γε,n(t)
dt

∣∣∣∣
= log

(
γε,n(b)

γε,n(0)

)
= log

(
Mε

pn

)
On conclut que log

(
Mε
pn

)
6 ε puis donc queMε 6 pne

ε 6 2pn si ε est suffisamment
petit (ce qu’on peut bien sûr supposer). Il suit que

ε > L(γε) >
∫ 1

0

√∑n
i=1 γ

′
ε,i(t)

2

γε,n(t)
dt >

1

Mε

∫ 1

0

√√√√ n∑
i=1

γ′ε,i(t)
2dt.

Or
∫ 1

0

√∑n
i=1 γ

′
ε,i(t)

2dt est la longueur euclidienne de γ (notons la l(γ)). On
est donc ramené à prouver la proposition dans le cas euclidien. Raisonnons par
l’absurde et supposons que p 6= q. C’est donc que pour un certain i, pi 6= qi.
Choisissons ε de sorte que ε < |pi − qi|, puis une courbe γε avec l(γε) 6 ε. On
obtient

ε > l(γε) =

∫ 1

0

√√√√ n∑
i=1

γ′ε,i(t)
2dt >

∫ 1

0

∣∣γ′ε,i(t)∣∣ dt > ∣∣∣∣∫ 1

0
γ′ε,i(t)dt

∣∣∣∣ = |pi − qi| ,

ce qui est une contradiction.

Cette preuve donne en plus un éclairage sur la topologie engendrée par la distance d.
On a montré en effet que sur de petits ouverts, les distances euclidiennes et hyperboliques
sont comparables (puisqu’on a réussi a borner Mε). Ainsi la topologie engendré par la
distance hyperbolique et la topologie de Un comme ouvert de Rn sont les mêmes. Seul
l’aspect métrique n’a d’intérêt dans l’étude de la géométrie hyperbolique.

Notation:ds2 =
∑
dx2i
x2n

l’élément de longueur hyperbolique (une quantité qui a donc
vocation a être intégrée le long d’une courbe).

L’infimum de la définition de la distance peut sembler effrayant et la distance hy-
perbolique a l’air très peu maniable à première vue. Nous montrerons en fait que cet
"inf" est un "min" et nous donnerons une description précise des courbes qui réalisent
cet "inf" (voir section 1.3.2)

1.2.2 La boule de Poincaré

La démarche est similaire à la construction de la métrique hyperbolique du demi-espace.
Cette fois-ce l’ouvert de Rn est la boule unité (euclidienne)

Bn = {x ∈ Rn ‖x‖ < 1}
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que l’on munit de la métrique (la preuve est semblable)

ds2 = 4

∑
dx2

i

(1− ‖x‖2)2
.

Cela signifie que l’on mesure la longueur des courbes par

L(γ) =

∫ b

a
2

√∑
γ′i(t)

2

1− ‖γ(t)‖2
dt

Et, toujours en analogie avec la paragraphe précédent,

d(p, q) = inf
γ∈Cp,q

L(γ).

On se permet de noter les deux distances (de la boule et du demi-espace) de la même
façon parce qu’on montrera qu’elles sont isométriques (constituant ainsi deux modèles
de la même géométrie hyperbolique).

1.2.3 L’hyperboloïde et le modèle projectif

Nous décrivons maintenant un autre modèle de la géométrie hyperbolique qui est con-
struit par analogie avec la géométrie sphérique. On rappelle que deux points p et q sur
la sphère Sn sont à distance sphérique d si

cos d = 〈p, q〉 .

Notons alors Rn,1 l’espace vectoriel Rn+1 muni de la forme quadratique canonique de
signature (n, 1) (la forme de Lorentz),

q(x) = q(x1, · · · , xn+1) =

n∑
i=1

x2
i − x2

n+1.

La ligne de niveau de q = −1 (une hyperboloïde) a deux composantes connexes, selon
que xn+1 est positif ou négatif. On note maintenant

Hn =
{
x ∈ Rn+1 q(x) = −1 et xn+1

}
puis encore x · y le produit scalaire lorentzien, c’est-à-dire,

x · y =
1

2
(q(x+ y)− q(x)− q(y)) =

n∑
i=1

xiyi − xn+1yn+1.

Lemme 1.2.4. Pour x et y dans Hn, on a x·y < 0 (en fait même x·y 6 −1 et x·y < −1
si x 6= y).

Preuve: Supposons x 6= y. Puisqu’il n’y a qu’un seul point de Hn par droite vectoriel,
l’espace Rx+Ry est un plan. Et, par le théorème de Sylvester, c’est un plan de signature
(1, 1) (pour la forme q restreinte). Son discriminant (dont on rappelle que seul le signe
est bien défini) est négatif. D’où,

q(x)q(y)− (x · y)2 < 0.

On obtient donc (x · y)2 > 1. De ceci, on ne retient seulement que xn+1 et yn+1 sont
supérieurs à 1. Puis, en utilisant

n∑
i=1

x2
i = −1 + xn+1 et

n∑
i=1

y2
i = −1 + yn+1,
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Figure 1.2: L’hyperboloïde à deux nappes et l’espace hyperbolique

on a

x · y =
n∑
i=1

xiyi − xn+1yn+1

=

(
n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

− xn+1yn+1

=
√
x2
n+1 − 1

√
y2
n+1 − 1− xn+1yn+1

On vérifie enfin facilement que cette quantité est négative pour des variables supérieurs
à 1.

Pour x et y dans Hn, ce lemme nous donne l’occasion de définir un nombre positif
d(x, y) par

cosh d(x, y) = −x · y.

Proposition 1.2.5. L’application (x, y) 7→ d(x, y) est une distance sur Hn.

Preuve: Cela résultera des isométries entre les modèles.

Version infinitésimale de cette distance. Comme dans les deux constructions
précédentes, on peut en fait décrire cette distance en intégrant sur des courbes un "élé-
ment infinitésimal de longueur" (c’est-à-dire une norme sur chaque espace tangent).
Prenons un élément x ∈ Hn; la restriction de la forme quadratique q à TxHn est définie
positive. Cela résulte du théorème de Sylvester et du lemme suivant

Lemme 1.2.6.
TxHn = x⊥ (orthogonal au sens de q).

Preuve: Par le cours de géométrie différentielle, parce que la sous-variétéHn est définie
par une submersion, on peut décrire le tangent par le noyau de la différentielle de la
submersion. Ainsi, v est dans TxHn si et seulement si dxq · v = 0. Or, par bilinéarité,
dxq · v = 2x · v.
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On dispose maintenant sur chaque espace tangent d’un produit scalaire, donc d’une
norme. On construit une distance sur Hn comme espace de longueur :

d′(p, q) = inf
γ∈Cp,q

L(γ)

(on note d′ cette distance en attendant de faire une analyse plus fine de la situation mais
on montrera bientôt que d = d′).

Version projective. Soit π la projection de Rn+1 sur Pn(R) (i.e π(x) = Rx). On
note Kn = π

({
x ∈ Rn+1 q(x) < 0

})
. C’est un ouvert de Pn(R) (par définition de la

topologie sur Pn(R), la projection π est ouverte). On définit maintenant une distance
sur Kn de manière à forcer π à être une isométrie.

d̄(x̄, ȳ) =
−x · y√
q(x)q(y)

.

L’espace métrique (Kn, d̄) est appelé le modèle projectif (ou modèle de Klein) de la
géométrie hyperbolique. Une étude plus approfondie de ce modèle est rédigée comme
exercice ref .

1.2.4 Équivalence entre les modèles

L’objectif de ce paragraphe est de montrer que les différents modèles de la géométrie
hyperbolique sont isométriques.

Qu’est-ce qu’une isométrie ? Vu la construction des différentes métriques, la ques-
tion mérite d’être posée... Soit alors (X1, d1) et (X2, d2) deux espaces métriques con-
struits comme précédemment (Xi est une variété différentiable et di = infγ L(γ)) et soit
aussi ϕ : X1 → X2 un difféomorphisme.

Définition 1.2.7. On dit que ϕ est une isométrie si, pour tout p et q dans X1,

d2(ϕ(p), ϕ(q)) = d1(p, q).

Cette définition n’est pas très facile à tester, en raison du fait que les distances ne
sont pas données explicitement. Il est utile de se donner des condition suffisantes plus
maniables.

1. Le difféomorphisme ϕ envoie toute courbe γ sur une courbe de même longueur.

2. Ou encore : le difféomorphisme ϕ transforme l’élément de longueur de d1 en
l’élément de longueur de d2. Plus précisément, pour chaque x1 ∈ X1, on s’est
donné un produit scalaire 〈·, ·〉1x1 sur Tx1X1 et, pour chaque x2 ∈ X2, un produit
scalaire 〈·, ·〉2x2 sur Tx2X2. Puis, on dit que ϕ envoie l’élément de longueur de X1

sur l’élément de longueur de X2 si, pour tout x1 ∈ X1 et tous u, v ∈ Tx1X1,

〈dx1ϕ · u, dx1ϕ · v〉
2
ϕ(x1) = 〈u, v〉1x1 .

Alors ϕ est une isométrie car la formule de changement de variables dans le calcul
de la longueur d’une courbe ramène au cas 1.

Remarque On montre en géométrie riemannienne que ces conditions nécessaires sont
aussi suffisantes.

Théorème 1.2.8. Les trois espaces de longueur Un, Bn et Hn sont isométriques.
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Preuve: Bn et (Hn, d′) sont isométriques.
Construisons tout d’abord une application entre Bn et Hn. L’idée s’inspire de la

projection stéréographique de la sphère vers le plan. Dans Rn+1 = Rn ⊕ R, on dispose
Bn dans l’hyperplan Rn des premières coordonnées et l’hyperboloïde comme auparavant.
Pour u ∈ Bn, on trace la droite affine passant par le point s de coordonnées (0,−1)
(toujours compte tenu de la décomposition de R2 précédente).

Figure 1.3: Une isométrie entre Bn et Hn

Lemme 1.2.9. La demi-droite affine D = {u+ t(u− s), t > 0} coupe l’hyperboloïde une
et une seule fois.

Preuve: L’expression q(u + t(u − s)) est un polynôme de degré 2, dont une étude
standard amène au résultat. Pour cela, on utilise que 0 6 q(u) < 1, que s et u sont
q-orthogonaux et que q(s) = 1.

On note alors ϕ(u) le point de la droite passant par s et u sur Hn. Il s’agit maintenant
de trouver une expression explicite de ϕ.

Notons x = ϕ(u). On sait que x, u et s sont alignés; il existe donc λ > 0 tel que
x− s = λ(u− s). D’où x+ en+1 = λ(u+ en+1) et x = λu+ (λ− 1)en+1. Puis, comme
x ∈ Hn, on a

−1 = q(x) = λ2 |u|2 − (λ− 1)2

car u et en+1 sont orthogonaux et que q(en+1) = −1 (on a noté |u| la norme de u : q est
le produit scalaire usuel en restriction à Rn. De ce calcul, on obtient λ = 2

1−|u|2 puis

x = ϕ(u) =
2u

1− |u|2
+

1 + |u|2

1− |u|2
en+1.

On constate déjà que ϕ est lisse. Un raisonnement similaire permettrait d’expliciter son
inverse ϕ−1 et de montrer que ϕ−1 est lisse (on note < ·, · > le produit scalaire euclidien).

Pour montrer que ϕ est une isométrie, on commence par différentier ϕ :

duϕ · v =
2v

1− |u|2
+ 2u

2 < u, v >(
1− |u|2

)2 + 2 < u, v >
2en+1(

1− |u|2
)2
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(1+x
1−x = −1 + 2

1−x). Et ainsi

duϕ · v =
2v

1− |u|2
+ 4u

< u, v >(
1− |u|2

)2 + 4en+1
< u, v >(
1− |u|2

)2 .

On peut alors montrer que ϕ est une isométrie

duϕ · v · duϕ · v =
4 |v|2(

1− |u|2
)2 +

16 < u, v >2(
1− |u|2

)3 +
16 |u|2 < u, v >2(

1− |u|2
)4 − 16 < u, v >2(

1− |u|2
)4

=
4 |v|2(

1− |u|2
)2 +

16 < u, v >2(
1− |u|2

)4

[
1− |u|2 + |u|2 − 1

]

=
4 |v|2(

1− |u|2
)2 ,

ce qui suffit, via l’identité de polarisation.

Bn et Un sont isométriques.
Soit f l’inversion de centre −en et de rayon

√
2 (faire une référence ). On sait que f

a une expression explicite :
f(x) = 2

x+ en

|x+ en|2
+ en.

On vérifie alors facilement que f est un difféomorphisme de Bn sur Un et que f est une
isométrie.

Notation: On note Hn l’un des modèles de la géométrie hyperbolique muni de sa
métrique hyperbolique.

1.3 Géométrie des espaces hyperboliques

1.3.1 Le groupe des isométries de Hn

Le groupe des isométries hyperbolique est amené à jouer un rôle important dans la suite
de ce cours. On rappelle en effet que la stratégie envisagée ici pour étudier la géométrie
hyperbolique consiste bien souvent à simplifier une situation générique grâce à l’action
du groupe des isométries.

Dans cette section, on utilisera le modèle de l’hyperboloïde de la géométrie hyper-
bolique, construit comme une des composantes connexes de la ligne de niveau -1 de
q(x) =

∑n
i=1 x

2
i − x2

n+1 pour x ∈ Rn+1.

Définition 1.3.1. Soit

O(n, 1) = Isom(q) =

{
A ∈ GLn+1(R) tA

(
In 0
0 −1

)
A =

(
In 0
0 −1

)}
et

OH = {ϕ ∈ O(n, 1), ϕ(Hn) = Hn} = PO(n, 1) := O(n, 1)/ {±1} .
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On dispose donc de 4 groupes

O(n, 1)

2 2

OH

2

SO(n, 1)

2

OH ∩ SO(n, 1)

et on note O0(n, 1) = OH ∩ SO(n, 1).

Théorème 1.3.2. Isom(Hn) = OH et Isom+(Hn) = O0(n, 1) (Isom+ désigne le groupe
des isométries qui préservent l’orientation).

Preuve: On démontre déjà le lemme suivant (dont l’utilisation sera omniprésente dans
la suite de ce cours)

Lemme 1.3.3. OH est transitif sur Hn.

Preuve: Soit x et y dans Hn. On rappelle que O(n, 1) est transitif sur les droites
négatives d’après le théorème de Witt. Il existe donc ϕ ∈ O(n, 1) telle que ϕ(Rx) = Ry
et puisque. q(x) = q(y), on sait que ϕ(x) = ±y. Ainsi :

1. Si ϕ(x) = y, alors ϕ ∈ OH et c’est gagné.

2. Si ϕ(x) = −y, alors −ϕ convient.

Puis le lemme suivant qui exprime qu’une bijection qui préserve le produit scalaire
est en fait un élément du groupe orthogonal.

Lemme 1.3.4. Soit (En, 〈·, ·〉) un espace euclidien et soit ϕ : En → En une bijection
telle que, pour tous x, y dans En,

〈ϕ(x), ϕ(y)〉 = 〈x, y〉.

Alors ϕ est linéaire (i.e ϕ ∈On(R)).

Preuve: Prenons x et y dans En et λ et µ dans R.

|ϕ(λx+ µy)− λϕ(x)− µϕ(y)|2

= |ϕ(λx+ µy)|2 + |λϕ(x) + µϕ(y)|2 − 2〈ϕ(λx+ µy), λϕ(x) + µϕ(y)〉

= |λx+ µy|2 + λ2 |x|2 + µ2 |y|2 + 2λµ〈x, y〉 − 2λ〈λx+ µy, x〉 − 2µ〈λx+ µy, y〉

et on vérifie facilement que cette dernière quantité est nulle.

Venons en maintenant à la preuve du théorème. Il bien clair qu’il suffit de démontrer
la première assertion puisque O0(n, 1) est justement constitué des élément de OH qui
préserve l’orientation. Par ailleurs, il est clair aussi que OH est contenu dans Isom(Hn).
Inversement, prenons f ∈ Isom(Hn). Pour tous x, y de Hn, on a donc, par définition

f(x) · f(y) = x · y

et il s’agit de montrer que f est linéaire (c’est-à-dire de montrer une version lorentzienne
du lemme précédent). Puisque OH est transitif, quitte à composer par un élément de
OH, on peut supposer que f fixe en+1.
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Pour x = x′ + ten+1, on pose y = f(x) = y′ + t′en+1. Or on a

t′ = −f(x) · en+1 = −f(x) · f(en+1 = −x · en+1 = t.

Il suit que f(x + ten+1) = ϕ(x) + ten+1. On constate que ϕ vérifie les hypothèses du
lemme puisque, en se restreignant à Rn, q lui donne une structure euclidienne. On
conclut que ϕ est linéaire et il en est de même pour f .

Remarque Cette preuve montre aussi qu’une isométrie hyperbolique qui fixe un point
est (conjuguée à) une isométrie euclidienne.

Nous montrons enfin que ce groupe d’isométries est isomorphe au groupe de Möbius,
rencontré au début de ce chapitre.

Théorème 1.3.5.

Isom(Bn) = Mob(Bn) = Mob(Sn−1) = Mob(Un) = Isom(Un).

Preuve: Les deux inégalités centrales ont été expliquées en ref et proviennent de
l’existence d’une "extension de Poincaré". Les deux inégalités restantes se prouvent de
la même manière et on ne s’occupe que de la première.

Soit dans un premier temps φ ∈ Mob(Bn) et montrons que φ est une isométrie
hyperbolique. On sait ref que φ est une composition de transformations orthogonales et
d’inversions dans des sphères S(a, r) orthogonales à Sn−1. On utilise les formules pour
la distance hyperbolique de ref :

cos d(φ(x), φ(y)) = 1 +
2 |φ(x)− φ(y)|2

(1− |φ(x)|2)(1− |φ(y)|2)
.

1. Si φ est une transformation orthogonale, on a déjà remarqué que c’est aussi une
isométrie hyperbolique et la formule ci-dessus permet de s’en apercevoir directe-
ment.

2. Si φ est une inversion dans S(a, r), il faut faire un peu de calcul. On sait (ref ) que

|φ(x)− φ(y)|2 =
r4 |x− y|2

|x− y|2 |y − a|2

et on connaît aussi une expression explicite de φ :

φ(x) = a+
r2

|x− a|2
(x− a).

D’où,

|φ(x)|2 = |a|2 +
2r2

|x− a|2
〈a, x− a〉+

r4

|x− a|2

puis

|φ(x)|2 − 1 = |a|2 − 1 +
2r2

|x− a|2
〈a, x− a〉+

r4

|x− a|2

=
(|a|2 − 1) |x− a|2 + 2r2〈a, x− a〉+ r4

|x− a|2

=
r2
(
|x− a|2 + 2〈a, x− a〉+ |a|2 − 1

)
|x− a|2
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puisque r2 = |a|2 − 1 car S(a, r) et Sn−1 sont orthogonales. On trouve enfin, en
constatant que |x|2 = |a+ x− a|2 = |x− a|2 + 2〈a, x− a〉+ |a|2,

|φ(x)|2 − 1 =
r2
(
|x|2 − 1

)
|x− a|2

,

ce qui permet de conclure directement.

Inversement, soit φ une isométrie hyperbolique. La première étape consiste à se
ramener au cas où φ fixe un point.

Lemme 1.3.6. Soit b ∈ Bn. Il existe une transformation de Möbius qui envoie 0 sur b.

Preuve: Soit a /∈ Bn, S(a, r) une sphère orthogonale à Sn−1 et σa la réflexion dans la
sphère S(a, r) (on ne note pas σa,r car r2 = |a|2− 1 donc a détermine r). Soit encore ρa
la réflexion dans l’hyperplan vectoriel dont a est un vecteur normal. On définit a∗ par
a∗ = a

|a|2 . Un calcul direct donne

σaρa(x) =

(
|a|2 − 1

)
x+

(
|x|2 + 2〈x, a∗〉+ 1

)
a

|x+ a|2
.

(utiliser la décomposition x = 〈x, a〉a∗ + x − 〈x, a〉a∗). En particulier, on constate que
σaρa(0) = a∗. Ainsi, pour b ∈ Bn, il suffit de considérer τb = σb∗ρb∗ .

Revenons au théorème et posons ψ(x) = τφ−1(0)φ(x). C’est une isométrie hyper-
bolique car les applications τb sont des compositions d’inversions (donc une isométrie
d’après la première partie de la preuve). De plus, ψ fixe maintenant le point 0. C’est
donc une transformation orthogonale, donc en particulier Möbius.

Définition 1.3.7. Les applications τb pour b ∈ Bn construites au cours de la preuve
précédente sont appelées des translations hyperboliques.

1.3.2 Distances hyperboliques et géodésiques

Rappelons que la distance hyperbolique est construite comme l’infimum des longueurs
de courbes qui relient deux points donnés. Nous montrons dans ce paragraphe que cet
infimum est en fait un minimum. Les courbes qui réalisent ce minimum sont appelées des
géodésiques (globalement minimisantes). Les géodésiques sont donc les courbes de plus
court chemin. Notre objectif est d’en donner une description géométrique dans chacun
des modèles de la géométrie hyperbolique. Pour cela, nous avons besoin de formules
explicites pour la distance hyperbolique.

Commençons par une formule qui donne la distance à l’origine dans la boule, que
l’on propagera ensuite à tous les points et dans les autres modèles avec les isométries.

Lemme 1.3.8. Pour u ∈ Bn, d(0, u) = 2 arctan h(|u|) et la distance est réalisée par une
courbe dont le support est un segment euclidien.

Preuve: Comme (presque) toujours dans la suite, on commence par faire agir le groupe
et puisque On(R) ⊂ Isom(Hn), on peut supposer que u = ae1 avec a > 0. Soit alors
c : [0, 1]→ Bn une courbe de classe C1 par morceaux qui joint 0 à u.

L(c) =

∫ 1

0

2 |c′(t)|
1− |c(t)|2

dt.
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Or ∣∣c′(t)∣∣ =

√√√√ n∑
i=1

c′i(t)
2 >

∣∣c′1(t)
∣∣ et |c(t)|2 =

n∑
i=1

c′i(t)
2 > |c1(t)|2 .

Il suit que

L(c) >
∫ 1

0

2 |c′1(t)|
1− c1(t)2

dt >

∣∣∣∣∫ 1

0

2c′(t)

1− c(t)2
dt

∣∣∣∣ = 2 arctan hl(c1) > 2 arctan h |u|)

avec égalité si et seulement si les majorations de |c′(t)| et |c(t)|2 sont exactes et si
2 arctan hl(c1) = 2 arctan h |u|, c’est-à-dire si et seulement si, pour tout t ∈ [0, 1],

c2(t) = · · · = cn(t) = 0 et c′1(t) > 0.

Une des conséquence de ce lemme est la comparaison des deux distances de l’hyperboloïde
:

Proposition 1.3.9. On dispose de deux distances dans Hn :

• d définie par cosh d(x, y) = −x · y et

• d′ définie par d′(x, y) = infγ∈Cp,q L(γ).

Alors d = d′.

Preuve: On a vu que OH = Isom d. Il est clair aussi que OH ⊂ Isom d′ car OH préserve
l’élément de longueur. Par transitivité, on peut donc supposer qu’un des points est en+1

(par exemple y = en+1). On rappelle encore que

ϕ : Bn −→ Hn

u 7−→ 2u
1−|u|2 + 1+|u|2

1−|u|2 en+1

est une isométrie pour d′. L’inverse se calcule facilement et on trouve

ϕ−1(x) = u =
x′

1 + t

si x = (x, t) ∈ Hn ⊂ Rn+1. Le lemme précédent nous donne

tanh
1

2
d(0, u) = |u| = |x′|

1 + t

puis

tanh2 1

2
d(0, u) =

|x′|2

(1 + t)2 =
t2 − 1

(1 + t)2 =
t− 1

t+ 1
.

La deuxième égalité vient du fait que −1 = q(x) = |x′|2 − t2. Mais par ailleurs,

tanh2

(
X

2

)
=

coshX − 1

coshX + 1

Ainsi
t = cosh d(0, u) = cosh d′(en+1, x)

car ϕ est une isométrie. Or t = −en+1 · x. Il suit que cosh d′(en+1, x) = −x · en+1. Donc
d = d′.
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À l’aide de cette proposition, on obtient un formulaire pour les distances hyper-
boliques de chaque modèle (voir l’exercice ref ).

Corollaire 1.3.10. On note |·| la distance euclidienne.

1. Pour u et v dans Bn,

tanh
d(u, v)

2
=

|u− v|(
1− 2〈u, v〉+ |u|2 |v|2

)1/2

et

cosh d(u, v) = 1 +
|u− v|2(

1− |u|2
)(

1− |v|2
) .

2. Pour x = (x′, t) et y = (y′, s) dans Un (i.e t, s > 0),

tanh
d(u, v)

2
=

(
|x′ − y′|2 + (t− s)2

|x′ − y′|2 + (t+ s)2

)1/2

et

cosh d(u, v) = 1 +
|x− y|2

2st

Cherchons maintenant les courbes qui réalisent ces distances.

Définition 1.3.11. Soit γ : [a, b]→ Hn une courbe de classe C1 par morceaux parcourue
à vitesse 1.

1. On dit que γ est une géodésique si, pour tout p = γ(t0) ∈ Im(γ), il existe ε > 0 tel
que, si |t− t0| < ε, alors

d(γ(t), p) = L(γ|[t,t0]) = |t− t0|

(i.e γ minimise localement les distances).

2. On dit que γ est une géodésique (globalement) minimisante si, pour tous (s, t) ∈ R2,

d(γ(s), γ(t)) = |s− t| .

Montrons tout d’abord un théorème d’existence et d’unicité de géodésiques min-
imisantes

Théorème 1.3.12. 1. L’espace métrique Hn est complet.

2. Pour p, q dans dans Hn, il existe une unique courbe de longueur minimale de classe
C1, γ : [0, d = d(p.q)]→ Hn telle que ‖γ′(t)‖ = 1 pour tout t, γ(0) = p et γ(d) = q.

3. Si p 6= q, la courbe γ du 2. se prolonge en une unique géodésique minimisante
γ : ]−∞,+∞]→ Hn.

Remarque On montre en géométrie riemannienne que le point 2. est toujours vrai
localement et que le fait de pouvoir prolonger les géodésiques est en fait équivalent à la
complétude (théorème de Hopf-Rinow). Le point 3. est faux en général, même pour des
variétés complètes, car les géodésiques peuvent cesser d’être minimisante (par exemple
sur la sphère).
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Preuve: Toutes ces propriétés sont invariantes par isométrie, on a donc le choix du
modèle; on prend celui de la boule.

1. D’après le lemme du début de cette section, les boules fermées sont compactes car

Bhyp(0, R) = Beucl(0, tanh
R

2
)

et ce qui est vrai en 0 est vrai partout par transitivité du groupe. Cette propriété
est équivalente à la complétude.

2. C’est essentiellement ce qui dit le lemme.

3. On peut supposer p = 0 et q = ae1 (on peut amener le premier point sur 0, puis,
par son stabilisateur qui est On(R), envoyer le second sur l’axe Re1). On pose alors
γ(t) = tanh

(
t
2

)
e1. Vérifions que γ convient.

γ′(t) =
1

2

(
1− tanh

(
t

2

))
e1

donc ∥∥γ′(t)∥∥
hyp

=
2

2
·

1− tanh2 t
2

1− tanh2 t
2

= 1.

Et, en utilisant les formules pour la distance,

tanh2

(
d(γ(s), γ(t)

2

)
=

|γ(s)− γ(t)|
1− 2 tanh

(
s
2

)
tanh

(
t
2

)
+ tanh2

(
s
2

)
tanh2

(
t
2

)
=

(
tanh

(
s
2

)
− tanh

(
t
2

))2(
1− tanh

(
s
2

)
tanh

(
s
2

))2
= tanh2

∣∣∣∣s2 − t

2

∣∣∣∣
Donc d(γ(s), γ(t)) = |s− t|.

Description des géodésiques
On conclut ce paragraphe avec une description géométrique des géodésiques (com-

plètes).

Théorème 1.3.13. 1. Pour l’hyperboloïde Hn, les géodésiques sont les intersections
avec Hn des plans vectoriels, i.e Hn ∩ (Rx⊕ Ry) pour x 6= y, x, y dans Hn.

2. Pour la boule de Poincaré Bn, ce sont des arcs de cercles orthogonaux au bord et
des diamètres de Bn.

3. Pour le demi-espace Un, ce sont des droites verticales ou des demi cercles orthog-
onaux à Rn−1.

4. Pour le modèle de Klein, ce sont des droites projectives.

Remarque La preuve consiste à exploiter adroitement les trois idées suivantes :

1. On a déjà montré que les diamètres de Bn sont des géodésiques.

2. Le groupe d’isométries Isom(Hn) envoie géodésiques sur géodésiques.
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Figure 1.4: Les géodésiques de l’hyperboloïde

Figure 1.5: Les géodésiques de la boule de Poincaré

3. Isom = Mob.

Preuve: 1. Prenons x = en+1 et y quelconque. La courbe Hn ∩ (Rx⊕ Ry) se
transporte avec l’isométrie entre les deux modèles sur un diamètre de la boule;
c’est donc une géodésique. Si le point x est maintenant quelconque lui-aussi, on
fait agir le groupe :

Lemme 1.3.14. Le groupe d’isométrie OH est transitif sur l’ensemble des plans
qui contiennent un vecteur x tel que q(x) = −1.

Preuve: Soit V un tel plan. On note R2 = Ren ⊕Ren+1. On veut montrer qu’il
existe A ∈ OH tel que A(R2) = V . On choisit une base {u1, · · · , un+1} de Rn+1

telle que

• {un, un+1} est une base de V .

• q(un+1) < 0 (c’est possible car V contient un tel vecteur)

• La dernière coordonnée de un+1 est positive (quitte à changer un+1 en −un+1,
ce qui ne change pas le signe de q(un+1)).

Puis on applique à la base {u1, · · · , un+1} un procédé de Gram-Schmidt pour la
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Figure 1.6: Les géodésiques du demi-espace

forme quadratique q (i.e on q-orthonormalise la base). En effet, on pose

wn+1 =
un+1√

−un+1 · un+1

de sorte que q(wn+1) = −1. Puis soit vn = un + (un · wn+1)wn+1 Alors vn 6= 0 et,
puisque vn ·wn+1 = un ·wn+1−un ·wn+1 = 0, on sait (par Sylvester) que q(vn) > 0.
Et donc on peut poser

wn =
vn√
vn · vn

.

Et on continue...

On note que V = Rwn+1⊕Rwn. La matrice constituée des vecteurs wi en colonnes
est dansO(n, 1) car elle envoie la base canonique qui est Lorentz-orthonormée sur la
base des wi qui est aussi Lorentz-orthonormée. De plus, elle préserve l’hyperboloïde
car la dernière coordonnée de wn+1 est positive.

De ce lemme, on déduit que toute courbe qui est l’intersection de d’un plan avec
Hn est géodésique. Pour la réciproque, il existe deux stratégies : la première est
rédigée sous forme d’exercice ref . La seconde consiste à utiliser un argument
riemannien : une géodésique γ est uniquement déterminée par γ(t0) et γ′(t0) : elle
est donc contenue dans le plan engendrée par ces deux vecteurs.

Remarque Les géodésiques de Hn sont des branches d’hyperboloïde, elles sont
paramétrées par γ(t) = cos tx+ sinh tX où γ(0) = x (x · x = −1) et γ′(0) = X.

4. Pour le modèle de Klein Kn, c’est maintenant évident puisque la projection pro-
jective envoie plans sur droites

2. Cela provient de la combinaison des deux faits

• Isom(Bn) = Mob(Bn) et

• Mob(Bn) est transitif sur les droites et cercles orthogonaux au bord.

3. Il suffit d’utiliser le fait que l’isométrie entre Un et Bn est une inversion.
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1.3.3 Bord à l’infini de l’espace hyperbolique

À revoir
Soit π : Rn+1 → P(R) la projection canonique. On rappelle que Kn = π({q < 0}).

Définition 1.3.15. Le bord de Hn, noté ∂Hn est π({q = 0}).

Proposition 1.3.16. 1. Le bord de Hn est difféomorphe à une sphère euclidienne
Sn−1 et Hn ∪ Sn−1 est difféomorphe à une boule fermée, dans chacun des modèles.

2. Toute isométrie de Hn s’étend continûment à ∂Hn.

3. Pour f ∈ Isom(Hn) (étendue au bord en f̄), si f̄ agit trivialement sur le bord, alors
f est triviale.

Preuve: 1. C’est un point subtil et il faut bien prendre soin de préciser les différentes
topologies.

Remarque Sur le modèle du 1/2 plan.

La géométrie qui se dépose au bord est la géométrie conforme.

1.3.4 Classification individuelle des isométries

Théorème 1.3.17. Soit f ∈ Isom(Hn. Alors, on est dans un et un seul des cas suivants
:

1. f admet (au moins) un point fixe dans Hn : f est dite de type elliptique.

2. f admet un unique point fixe qui au bord de Hn : f est dite de type parabolique.

3. f n’a pas de point fixe dans Hn et a exactement deux points fixes dans ∂Hn : f est
dite de type hyperbolique ou loxodromique.

Preuve: On procède en deux étapes :
Étape 1 : f admet toujours au moins un point fixe dans Hn ∪ ∂Hn.
On pourrait appliquer directement le théorème de Brouwer (toute application con-

tinue de la boule dans la boule admet un point fixe) mais on préfère un raisonnement
direct.

Lemme 1.3.18. Soit ϕ ∈ O(n, 1). Alors il existe une droite ∆ de Rn+1 qui est soit
négative, soit isotrope et qui est stable par ϕ.

Preuve: On procède par récurrence sur n > 1.

• n = 1 : R1,1 est un plan hyperbolique (au sens des espaces quadratiques) et on en
connaît ses isométries : si elle est directe, alors

ϕ =

(
a 0
0 1

a

)
et la droite Re2 est stable et négative. Si elle est indirecte, c’est une réflexion par
rapport à une droit ∆. donc ∆ et ∆⊥ sont stables et l’une des deux est négative
par Sylvester.
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• Supposons le résultat vérifié pour toutes les dimensions inférieures à n−1. Comme
toute matrice réelle, ϕ admet une droite stable ou un plan stable. Supposons déjà
que ϕ admette une droite stable ∆. Si ∆ est négative ou nulle, c’est bon. On peut
donc supposer que ∆ est positive. On a donc Rn,1 = ∆⊕∆⊥ et ∆⊥ est stable. Par
Sylvester, ∆⊥ est de type (n− 1, 1). On lui applique l’hypothèse de récurrence.

Supposons maintenant que ϕ admette un plan stable P . Alors, P ne peut être que
de trois types : de type (+,+) (auquel cas son orthogonal est de signature (n−2, 1)
et on applique l’hypothèse de récurrence, (+,−) (auquel cas on est ramené à n = 1)
ou (0,+) (auquel cas le radical est stable). En effet, puisque l’indice de Witt est
1, les types (0, 0) et (0,−) sont impossibles.

Étape 2 : Si f fixe trois points distincts au bord de Hn, alors f a des points fixes
dans Hn.

Soit donc ϕ ∈ O(n, 1) qui admet trois droites isotropes stables par ϕ : ϕ(Di) = Di

pour i = 1, 2, 3. Soit W =Vect(D1, D2, D3). Alors W est de dimension 3 car il ne
peut y avoir trois droites isotropes dans un plan d’un espace de Lorentz (voir plus
haut, toujours car l’indice de Witt est 1). De plus ϕ induit une isométrie de W car
les droites sont stables. Pour i 6= j, Vect(Di, Dj) est un plan (+,−) car il a deux
droites isotropes. Posons ∆k = Ruk =Vect(Di, Dj)

⊥ (l’orthogonal est bien de dimension
1 car Vect(Di, Dj) est défini). On déduit du fait que W est de type (+ + −) (seule
possibilités pour avoir plus de deux droites isotropes), que q(uk) = 1. Maintenant, on a
D3 =Vect(∆,∆2)⊥ (en effet (∆,∆2)⊥ = ∆⊥1 ∩∆⊥2 =Vect(D2, D3)∩Vect(D1, D3) = D3).
De plus, D3 ⊂Vect(∆1,∆2) sinon W =Vect(∆1,∆2) serait (+, 0,−). On en déduit que
ϕ|Vect(∆1,∆2) est une homothétie car elle a trois droites stables (et même ϕ = ±id mais
c’est inutile pour la suite). Donc ϕ fixe toutes les droites et en particulier les droite
négatives.

Remarque Le type d’une isométrie ne dépend que de la classe de conjugaison. En effet,
si on note Fix(f) = {x ∈ Hn ∪ ∂Hn, f(x) = x}, alors, pour g ∈ Isom(Hn),

Fix(gfg−1) = g (Fix(f)) .

Proposition 1.3.19. Il existe des isométries des trois types (si n > 2).

Preuve: • elliptique : dans le modèle de l’hyperboloïde, on prend ϕ ∈ On(R) et

f(x′ + ten+1) = ϕ(x′) + ten+1.

C’est une isométrie de Hn qui fixe en+1.

Remarque On a déjà constaté que toute isométrie elliptique est conjuguée à une
telle isométrie (car Isom(Hn) est transitif).

• parabolique : dans le modèle du 1/2 espace, soit

f : Un −→ Un
x 7−→ x+ a

avec a ∈ Rn−1 (i.e f est une translation le long d’une direction parallèle à l’hyperplan
de bord). On vérifie facilement que f est une isométrie avec les formules pour la
distance. Et Fix(f) = {∞}. Plus généralement, si ϕ est une isométrie affine de
Rn−1 sans point fixe, on peut poser f(x′ + xnen) = ϕ(x′) + xnen.
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• hyperbolique : dans le modèle du 1/2 espace et avec λ > 0, on pose

f : Un −→ Un
x 7−→ λx

.

Alors Fix(f) = {0,∞}. Plus généralement, si ϕ ∈ On−1(R), on prend f(x′ +
xnen) = λ (ϕ(x′) + xnen).

1.4 Quelques précisions supplémentaires en dimensions 2 et
3

1.4.1 Géométrie du plan hyperbolique

On se place dans le modèle du 1/2-plan U2 = H2 = {z = x+ iy, y > 0} ⊂ C.
On considère le groupe de matrices

SL2(R) =

{(
a b
c d

)
où ad− bc = 1

}
.

Proposition 1.4.1. Le groupe SL2(R) agit sur H2 par(
a b
c d

)
· z =

az + b

cz + d
.

C’est une action par isométries, qui se factorise en une action de PSL2(R) =SL2(R)/ {±I2}.
Elle préserve l’orientation.

Preuve: 1. Vérifions déjà que H2 est stable. En effet,

=
(
az + b

cz + d

)
=

ad− bc
|cz + d|2

=z =
=z

|cz + d|2
> 0.

2. Vérifions ensuite que c’est une action par isométries. Notons f(z) = az+b
cz+d . On

remarque que f est holomorphe sur H2 donc que dzf · u = f ′(z)u. Par ailleurs, si
u et v sont deux nombres complexes, 〈u, v〉 = <(uv̄). Ainsi

〈dzf · u, dzf · v〉f(z) =
< (f ′(z)uf ′(z)v)

(=f(z))2 =
uv̄

|cz + d|4
· |cz + d|4

=z
= 〈u, v〉z.

3. Pour obtenir une action de PSL2(R), on constate que le sous-groupe {±1} est le
noyau de l’action et on applique le théorème de factorisation.

4. Toute application holomorphe préserve l’orientation (conditions de Cauchy-Riemann).

On veut maintenant montrer que PSL2(R) est exactement le groupe des isométries
directes. Comme d’habitude, on commence par montrer que ce groupe est suffisamment
transitif.

Lemme 1.4.2. Le groupe PSL2(R) est transitif sur les droites et cercles orthogonaux au
bord (i.e les géodésiques).

Preuve: On cherche à tout ramener sur l’axe imaginaire. Si L est une droite verticale
d’abscisse x0, alors z 7→ z − x0 convient. Si L est un cercle euclidien orthogonal à R et
qui rencontre l’axe réel en α, alors z 7→ −1

z−α + β avec β à ajuster convient.



CHAPTER 1. LA GÉOMÉTRIE HYPERBOLIQUE 27

Théorème 1.4.3. Le groupe Isom(H2) est engendré par les homographies et l’application
z 7→ −z̄. Il est isomorphe à

PSL∗2(R) =

{(
a b
c d

)
où ad− bc = ±1

}
/ {±I2} .

Le sous-groupe PSL2(R) est d’indice 2 et constitue les transformations qui préservent
l’orientation.

Preuve: Soit φ une isométrie de H2. On note I l’axe imaginaire. Puisque φ envoie
géodésiques sur géodésiques, φ(I) est une géodésique. D’après le lemme précédent, il
existe g ∈PSL2(R) tel que g envoie φ(I) sur I. On peut donc supposer que φ fixe
globalement I. Puis, quitte à appliquer une transformation de la forme z 7→ kz, on
peut supposer que φ fixe i ∈ I. Enfin, en appliquant encore au besoin z 7→ −1

z , on peut
supposer que φ stabilise les deux demi axes (i∞) et (0, i). Puisque φ est une isométrie,
on conclut que φ fixe chaque point de I. À partir de maintenant, il s’agit de montrer que
φ est soit l’identité, soit la réflexion par rapport à I. Posons z = x+ iy et φ(z) = u+ iv.
Pour t > 0, on a

d(z, it) = d(φ(z), φ(it)) = d(u+ iv, it).

Puis, en passant au cosh,

1 +
|z − it|2

2yt
= 1 +

|u+ i(v − t)|2

2vt
.

D’où,
x2 + (y − t)2

y
=
u2 + (v − t)2

v

et
x2 + (y − t)2v = u2 + (v − t)2y

ou encore
x2 + (y − t)2v

t2
=
u2 + (v − t)2y

t2
.

Faisant tendre t vers ∞, il reste v = y, puis facilement, x2 = u2. On a donc φ(z) = z
ou φ(z) = −z̄. Les isométries sont lisses (en particulier continues) donc une des deux
formules est vraie pour tout z.

Remarque On obtient en particulier un isomorphisme de groupe (dit isomorphisme
exceptionnel) PSL2(R) ' O0(2, 1).

Le lemme suivant sera souvent utilisé par la suite.

Lemme 1.4.4. Le groupe PSL2(R) est 2 fois transitif sur le bord.

Preuve: On utilise le modèle du 1/2 plan, pour lequel le bord est la droite projective
réel. L’action de PSL2(R) sur le bord est l’action projective usuelle. Soit alors x1 et x2

deux points distincts du bord R∪{∞}. On peut connecter ces deux points à 0 et∞ par

f(z) =
z − x1

z − x2
· 1

x1 − x2
.
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Retour à la classification des isométries
Voici un autre critère de classification des isométries selon les trois types qui utilise

la représentation des isométries sous forme de matrice de PSL2(R).

Proposition 1.4.5. Soit γ ∈PSL2(R) = Isom(H2), γ 6= 1. Alors,

• Si trace2 γ < 4, alors γ est elliptique.

• Si trace2 γ = 4, alors γ est parabolique.

• Si trace2 γ > 4, alors γ est hyperbolique.

Noter que γ admet deux représentants dans SL2(R) : A et −A et on pose

trace2 γ = (traceA)2

(trace γ n’est pas définie). On aurait aussi pu discuter selon |trace γ|.

Preuve: C’est élémentaire, on pose

γ(z) =
az + b

cz + d

(
a b
c d

)
∈ SL2(R)

L’équation γ(z) = z est équivalente à cz2 + (d − a)z − b = 0 dont le discriminant est
∆ = trace2 γ − 4.

Classes de conjugaison
Une des applications possibles de la géométrie hyperbolique est de trouver les classes

de conjugaison dans le groupe PSL2(R).

Proposition 1.4.6. Soit γ ∈PSL2(R), γ 6= 1.

1. Si |trace γ| < 2, alors γ est conjuguée dans PSL2(R) à γθ =

(
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
(géométriquement, une rotation d’angle θ autour de z = i. Et γθ est conjugué à
γθ′ si et seulement si θ = θ′ [2π].

2. Si |trace γ| = 2, alors γ est conjuguée dans PSL2(R) à
(

1 1
0 1

)
ou
(

1 −1
0 1

)
.

3. Si |trace γ| > 2, alors γ est conjuguée dans PSL2(R) à γλ =

(√
λ 0

0 cos 1√
λ

)
, λ 6= 1.

Et γλ est conjuguée à γµ si et seulement si λ = µ ou λ = 1
µ .

Preuve: 1. Le résultat est déjà connu : conjuguer sert à changer le point fixé puis
Stabi(SL2) =SO2 et donc Stabi(PSL2) =PSO2 'SO2.

2. On peut supposer γ(∞) =∞ dans le modèle du 1/2 plan. Alors γ(z) = z + b car
|trace γ = 2|. Si b > 0, soit ψ(z) = z

b ; on a ψ ◦ γ ◦ ψ−1(z) = z + 1. Si b < 0, alors
ψ(z) = z

−b convient. On note maintenant t±(z) = z 7→ z ± 1 et on montre (par
l’absurde) que t+ et t− ne sont pas conjuguées. Supposons donc qu’il existe ψ telle
que ψt+ψ−1 = t−. Alors ψ fixe nécessairement l’infini et ψ(z) = az+ b avec a > 0.
Un calcul explicite donne ψ ◦ γ ◦ ψ−1(z) = z + a.

Remarque Les deux applications paraboliques t+ et t− sont en fait conjuguées
dans Isom(H2) par σ(z) = −z̄.
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3. On peut supposer que γ(0) = 0 et γ(∞) = ∞ (lemme 1.4.4). Alors γ(z) = λz,
λ > 0, λ 6= 1. Si γλ est conjuguée à γµ, alors

trace2 γλ = λ+
1

λ
+ 2 = µ+

1

µ
+ 2 = trace2 γµ.

Soit f(x) = x2+1
x . On vérifie bien que, si y2 > 4, alors y a deux antécédents par f .

On en déduit bien que λ = µ ou λ = 1
µ . D’ailleurs, γλ et γ 1

λ
sont conjuguées par

σ(z) = −1
z .

On montre enfin un dernier théorème de classification qui utilise comme critère la
distance de déplacement.

Définition 1.4.7. Soit (X, d) un espace métrique et soit γ ∈ Isom(X). On appelle
distance de déplacement et on note dγ la quantité

dγ = inf
x∈X

d(x, γx).

Par exemple, si γ a un point fixe, alors dγ = 0.
Voilà le critère de classification.

Proposition 1.4.8. Soit γ ∈ Isom(H2). Alors

1. Si dγ = 0 et si dγ est atteint, alors γ est elliptique.

2. Si dγ = 0 mais que dγ n’est pas atteint, alors γ est parabolique.

3. Si dγ > 0, alors γ est hyperbolique.

Pour démontrer ce critère (en particulier que dγ = 0 uniquement dans le cas parabolique
ou elliptique), on utilise les informations suivantes sur les transformations hyperboliques.

Proposition 1.4.9. Soit γ ∈PSL2(R) une isométrie hyperbolique. Alors,

1. Il existe une unique géodésique A fixe par γ et on dit que A est l’axe de la trans-
formation hyperbolique γ.

2. Plus les points sont loin de l’axe, plus ils sont déplacés par γ. Précisément, pour
z ∈ H2,

sinh

(
dγ
2

)
cosh d(z,A) = sinh

(
d(z, γz)

2

)
.

3. En particulier, dγ > 0 et d(z, γz) = dγ si et seulement si z ∈ A.

Montrons déjà cette seconde proposition.

Preuve: Soit α et β les points fixes de γ et soit A = (α, β) la géodésique d’extrémités
α et β. Alors A est fixe par γ puisqu’une géodésique est uniquement déterminée par
ses deux extrémités. Soit maintenant B une autre géodésique fixe par γ Alors B(∞) et
B(−∞) sont fixes par γ2 et on sait que les points fixes de γ2 sont exactement α et β.
Donc A = B comme lieux géométriques.

Pour la formule de la distance à l’axe, on peut supposer que γ(z) = λz, quitte à
conjuguer, ce qui ne change pas les données du problème. L’axe de γ est donc la demi-
droite de H2, <z = 0. On utilise la formule de la distance

cosh d(z, w) = 1 +
|z − w|2

2=z=w
.
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Figure 1.7: La situation

Soit donc z ∈ H2; il existe un unique angle θ ∈ ]0, π[ tel que z est sur la demi-droite
qui forme an angle θ avec l’axe des abscisses, disons z = yeiθ. Alors

cosh d(z,A) = cosh d(yeiθ, iy).

En effet la droite d’angle θ et la géodésique passant par iy et yeiθ sont orthogonales (un
cercle est orthogonal à chacun de ses rayons). Donc le point iy est bien le projeté de
yeiθ sur l’axe de γ. Puis

cosh d(z,A) = 1 +

∣∣yeiθ − iy∣∣2
2yy sin θ

= 1 +

∣∣eiθ − i∣∣2
2 sin θ

= 1 +
2− 2<

(
ie−iθ

)
2 sin θ

= 1 +
1−<

(
ei(

π
2
−θ)
)

sin θ

= 1 +
1− cos

(
π
2 − θ

)
sin θ

= 1 +
1− sin θ

sin θ

=
1

sin θ

Gardons ça en tête. On vérifie ensuite, en utilisant la même formule pour la distance
que

cosh d(z, λz) = 1 +
(λ− 1)2

2 sin2 θ
.

On constate déjà que cosh d(z, λz) est minimale lorsque sin θ est maximal, c’est-à-dire
θ = π

2 , i.e z est sur l’axe ! Ainsi dγ = l = lnλ (la distance hyperbolique entre i et λi).
On obtient aussi en particulier que

cosh dγ = 1 +
(λ− 1)2

2
.
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Enfin, en utilisant l’identité coshX = 1 + sinh2 X
2 , on trouve d’une part

sinh2

(
dγ
2

)
=

(λ− 1)2

2
donc sinh

(
dγ
2

)
=
λ− 1√

2

et d’autre part

sinh

(
d(z, γz)

2

)
=

λ− 1√
2 sin θ

.

On en déduit facilement la formule.

On peut maintenant démontrer la classification des isométries selon la distance de
déplacement :

Preuve: 1. Si dγ = 0 et dγ est atteint, alors γ a un point fixe et c’est une isométrie
elliptique.

2. Grâce à la proposition précédente, on sait maintenant que si dγ = 0 et dγ n’est pas
atteint, alors γ est parabolique.

3. Inversement, si γ est parabolique, alors γ est conjuguée à z 7→ z±1. Prenons, pour
z fixé, la courbe c(t) = z + t. Alors

d(z, z + 1) 6 L(c) =

∫ 1

0

dt

=z
=

1

=z
→ 0.

1.4.2 Géométrie hyperbolique en dimension 3

Les preuves des énoncés de cette section sont rédigés sous forme d’exercices corrigés.
On donne ici sans preuve les principaux résultats. Le plus important donne une autre
description du groupe des isométries.

Théorème 1.4.10. On a les isomorphismes

Isom+(H3) = O0(3, 1) = PSL2(C).

La preuve constitue l’exercice ref mais on donne ici quelques explications.

Commentaires
1. L’identification Isom+(H2) =SL2(R) peut sembler plus naturelle que celle de

Isom+(H3) avec PSL2(C) puisque SL2(R) agit naturellement sur un espace de dimension
réelle 2. L’explication passe en vérité par le bord. On a déjà vu, en toutes dimensions,
qu’une isométrie est caractérisée par son action au bord, via l’extension de Poincaré
et que la géométrie qui se dépose sur la sphère à l’infini de l’espace hyperbolique est
la géométrie conforme. On peut alors montrer, comme on l’a fait en dimension 2, que
SL2(C) est le groupe conforme de la sphère S2 = ∂H3. Dans ce contexte, il est en fait
plus convenable de penser à la sphère S2 comme à la droite projective complexe P1(C) sur
laquelle SL2(C) agit naturellement (nous verrons que l’action d’une isométrie à l’infini
est justement l’action projective).

2. Nous présentons en exercice une autre approche, que l’on résume de la façon
suivante. Soit

L =

{(
a b
b̄ c

)
, b ∈ C, a, c ∈ R

}
.
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Figure 1.8: Dynamique des isométries hyperboliques

C’est un R-espace vectoriel de dimension 4 (l’espace des formes hermitiennes sur C2).
D’autre part

−det

(
a b
b̄ c

)
= |b|2 − ac

de sorte que (L,−det) est un espace de Lorentz (de type (3, 1). Donc

H3 = {A ∈ L, detA = 1}

est le modèle de l’hyperboloïde de H3. L’action de SL2(C) est maintenant naturelle (par
changement de base de la forme quadratique) :

SL2(C)×H3 −→ H3

(P,A) 7−→ PAtP̄

C’est bien sûr une action par isométrie pour −det. Il s’agit de montrer que l’on a toutes
les isométries.
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Proposition 1.4.11. On a une suite exacte de groupes

1→ {±1} → SL2(C)→ Isom+(H3)→ 1.

Donc Isom+(H3) =SL2(C)/ {±1} =PSL2(C).
3. On peut enfin expliciter l’action des isométries sur les autres modèles. Le plus

simple est de constater que l’on a une isométrie

C× ]0,∞[ = U3 −→ H3

z + tj 7−→ 1
t

(
|z|2 + t2 z

z̄ 1

)
De cette isométrie, on déduit une action de PSL2(C) sur U3 donnée par(

α β
γ δ

)
· (z + tj) =

(αz + β)
(
γz + δ

)
+ αγ̄t2 + tj

|γz + δ|2 + |γ|2 t2
.

Bien que peu utilisée à cause de sa complexité, cette formule montre en tout cas que
SL2(C) agit bien projectivement au bord.

4. Une autre méthode aurait constitué à appliquer une formule explicite de l’extension
de Poincaré (Beardon ).

1.5 Exercices corrigés pour le chapitre 1

Énoncés des exercices

Exercice 1.1 (Formules pour la distance)
On note ‖ · ‖ la distance euclidienne. Montrer que

1. pour tout u, v ∈ Bn on a

cosh d(u, v) = 1+
2‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)
et tanh

d(u, v)

2
=

‖u− v‖
(1− 2〈u, v〉+ ‖u‖2 + ‖v‖2)

1
2

,

2. pour tout x, y ∈ Un on a

cosh d(x, y) = 1+
‖x− y‖2

2xn+1yn+1
et tanh

d(x, y)

2
=

(
‖x′ − y′‖2 + (xn+1 − yn+1)2

‖x′ − y′‖2 + (xn+1 + yn+1)2

) 1
2

,

où x = (x′, xn+1) et y = (y′, yn+1),

Exercice 1.2 (Modèle de Klein de la géométrie hyperbolique)
On considère la boule unité Bn munie de la métrique construite comme suit: pour

u, v ∈ Bn, soient a, b ∈ ∂Bn = Sn−1 les deux points du bord de Bn tels que a, u, v et
b se trouvent sur la même droite, et ‖a − v‖ > ‖a − u‖ et ‖b − u‖ > ‖b − v‖ (faire un
dessin). On définit alors la fonction suivante sur Bn:

dK(u, v) =
1

2
log

(
‖a− v‖‖b− u‖
‖a− u‖‖b− v‖

)
=

1

2
log ([a, u, v, b]) .

1. Montrer que le modèle de la boule unité (Bn, d) et de Klein (Bn, dK) sont isométriques,
où d est donnée explicitement par le point (a) du premier exercice.
Indication: Un bon moyen de passer d’un modèle à l’autre est de faire une étape
par l’hyperboloïde.

2. Demander à l’assistant pourquoi ce modèle est le même que le modèle projectif
défini en cours.
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Exercice 1.3 (Autour de l’hyperboloïde)
On rappelle que la métrique d sur Hn ⊂ Rn+1 est définie par

cosh d(x, y) = −x · y = −1

2
(q(x+ y)− q(x)− q(y)) ,

avec q la forme quadratique définie par q(x) = x2
1 + . . .+ x2

n − x2
n+1.

1. Supposons que n = 2 et soient x, y ∈ R3 et

J =

1 0 0
0 1 0
0 0 −1

 .

On définit le produit vectoriel lorentzien de x et y par x⊗ y := J(x× y), où × est
le produit vectoriel euclidien. Montrer que pour tout w, x, y, z ∈ R3

(a) x · (x⊗ y) = y · (x⊗ y) = 0. On dit dans que x⊗ y est Lorentz-orthogonal à
x et y.

(b) x⊗ y = −y ⊗ x

(c) (x⊗ y) · z =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣
(d) x⊗ (y ⊗ z) = (x · y)z − (z · x)y

(e) (x⊗ y) · (z ⊗ w) =

∣∣∣∣x · w x · z
y · w y · z

∣∣∣∣
2. On suppose toujours que n = 2, mais maintenant x, y ∈ Hn. Montrer que ‖x ⊗
y‖2 = sinh d(x, y).

3. En utilisant le fait que OH est transitif sur Vect(x, y, z) pour tout x, y, z ∈ Hn ainsi
que les points précédents, montrer que d satisfait l’inégalité du triangle.

4. (Sera utilisé au cours) On dit que trois points x, y, z ∈ Hn sont hyperboliquement
colinéaires s’il existe un plan vectoriel contenant x, y et z. Montrer que si trois
points x, y, z ∈ Hn vérifient

d(x, y) + d(y, z) = d(x, z),

alors ces trois points sont hyperboliquement colinéaires.

Exercice 1.4 (Le théorème de Sylvester)
SoitQ : Rn → R une forme quadratique réelle sur Rn, i.e. un polynôme réel homogène

de degré deux. On définit l’indice de q comme étant la dimension maximale d’un sous-
espace vectoriel V de Rn tel que Q(x) < 0 pour tout x ∈ V \ {0}. Si q est l’indice de Q
et p est la dimension maximale d’un sous-espace W de Rn tel que Q(x) > 0 pour tout
x ∈W \ {0}, alors on appelle le couple (p, q) la signature de Q. Les vecteurs x ∈ Rn tels
que Q(x) = 0 sont appelés isotropes. Observer que

B(x, y) :=
1

2
(Q(x+ y)−Q(x)−Q(y))

définit une forme bilinéaire symétrique sur Rn, appelée la forme polaire de Q.

1. Montrer qu’il existe une base (e1, . . . , en) de Rn tel que

(a) B(ei, ej) = 0 pour tout i 6= j,
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(b) B(ei, ei) 6= 0 pour tout 1 ≤ i ≤ r = rang(B),
(c) B(ei, ei) = 0 pour tout r < i ≤ n,

une telle base est dite orthogonale pour Q.

2. Montrer le théorème de Sylvester : pour toute base (e1, . . . , en) orthogonale pour Q
on a

p = #{i | Q(ei) > 0} et q = #{i | Q(ei) < 0}.

3. Dans le cas particulier de Rn,1 vu au cours la semaine passée, montrer que si
W ⊂ Rn est un sous-espace vectoriel de dimension m, alors les seules signatures
possibles pour la restriction de q à W sont (m, 0), (m− 1, 1) ou (m− 1, 0).

4. Montrer que si x, y ∈ Hn, alors la restriction de q à Vect(x, y) est de signature
(1, 1).

Exercice 1.5 (Sphères hyperboliques)
On note SB(b, r) la sphère hyperbolique de centre b ∈ Bn et de rayon r > 0, i.e.

SB(b, r) = {x ∈ Bn | dB(b, x) = r}.

Montrer qu’un sous-ensemble S ⊂ Bn est une sphère hyperbolique si et seulement si S
est une sphère euclidienne de En contenue dans Bn.
Indication: L’application τb définie au cours la semaine passée pourrait être utile.

Exercice 1.6 (Gauss-Bonnet hyperbolique) Dans cet exercice, on introduit
la notion volume hyperbolique. On définit le volume hyperbolique d’un sous-ensemble
A ⊂ U2 par

µ(A) :=

∫
A

dxdy

y2
,

si cette intégrale existe. L’expression dxdy
y2

est appelé élément de surface hyperbolique.
Un polygone hyperbolique à n côtés est un sous-ensemble fermé de Ū2 ∪ {∞} borné
par n segments géodésiques (pour la distance hyperbolique). Si deux de ces segments
s’intersectent, on appelle leur intersection un sommet du polygone. Remarquons que
bien que des sommets puissent se trouver dans ∂U2 ∪ {∞}, aucun segment géodésique
ne peut se trouver dans ∂U2.
Soit T un triangle hyperbolique (un polygone hyperbolique à 3 côtés) dans U2, d’angles
intérieurs α, β et γ. En supposant que PSL2(R) ⊂ Isom(U2) = M(U2) (on montrera
ceci dans la suite du cours), montrer que

µ(T ) = π − α− β − γ.

Indication: Faire d’abord le cas ou un ou plusieurs des sommets du triangle se trouve(nt)
dans ∂U2 ∪ {∞}. Ensuite, se ramener à ce cas et utiliser la transitivité de l’action du
groupe d’isométries sur le bord à l’infini.

Exercice 1.7 Trigonométrie hyperbolique.

1. On se place dans le modèle du disque hyperbolique ou du 1/2 plan. La mesure de
l’angle hyperbolique entre deux vecteurs u et v de TzH2 est donnée par

cos](u, v) =
< u, v >hyp

‖u‖hyp ‖v‖hyp

.

Un angle hyperbolique entre deux segments géodésique qui s’intersectent au point z
est par définition l’angle dans TzH2 entre les deux vecteurs dérivés des géodésiques.
Montrer que cette notion d’angle est la même chose que l’angle euclidien



CHAPTER 1. LA GÉOMÉTRIE HYPERBOLIQUE 36

2. On considère un triangle hyperbolique T dont les cotés sont des segments géodésiques,
les angles aux sommets sont des nombres strictement positifs α, β et γ et les
longueurs des côtés opposés a, b et c. Prouver les trois lois de la trigonométrie
hyperbolique

(a) Loi du sinus
sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
.

(b) Première loi du cosinus

cosh c = cosh a cosh b− sinh a sinh b cos γ.

(c) Deuxième loi du cosinus

cosh c =
cosα cosβ + cos γ

sinα sinβ
.

3. Expliquer pourquoi la deuxième loi du cosinus n’a pas d’analogue en géométrie eu-
clidienne. Quels sont les paramètres dont on a besoin pour reconnaître un triangle
hyperbolique à isométries près ? Comparer avec le cas euclidien.

Exercice 1.8 Sur la topologie de SL2(R).

1. Rappeler la définition d’une topologie quotient.

2. Montrer que SL2(R) est un groupe topologique (c’est-à-dire que les opérations de
groupe sont continues) et qu’il est homéomorphe à R2 × S1.

3. (∗) Comment peut-on analyser la topologie de SLn(R) ?

Exercice 1.9 Sur la transitivité de PSL2(R) au bord du plan hyperbolique.

1. Montrer que l’action de PSL2(R) est deux fois transitive sur le bord de H2.

2. Que peut-on dire d’une isométrie de H2 qui fixe trois points du bord.

Exercice 1.10 Les cercles hyperboliques sont des cercles euclidiens.
On se place dans le modèle du 1/2 plan. Montrer que tous les cercles hyperboliques

sont des cercles euclidiens (avec un centre et un rayon différent) et inversement.

Exercice 1.11 (Horosphères dans les différents modèles)
On se place pour commencer dans le modèle de la boule conforme. Une horosphère

Σ de Bn basée en un point b ∈ Sn−1 est l’intersection avec Bn d’une sphère euclidienne
de Bn tangente à Sn−1 en b. En utilisant les isométries (désormais familières) Bn → Un

et Bn → Hn, on définit une horosphère dans Un (resp. dans Hn) comme l’image d’une
horosphère dans Bn par l’une ou l’autre de ces isométries.

(a) Pour n = 2, dessiner des horocycles (i.e. des horosphères en dimension 2) dans
B2, U2 et H2.

(b) Comparer la longueur hyperbolique d’un segment d’horocycle à la distance hyper-
bolique entre ses extremités et en déduire qu’il est ridicule de se déplacer le long
d’un horocycle.
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Exercice 1.12 (Un autre modèle de H3)

(a) Compléter et détailler l’argument donné en cours établissant que Isom(H3) = PSL2(C).

(b) Expliciter l’action de l’action de SL2(C) sur U3.

(c) Pour une matrice γ ∈SL2(C), on pose ‖γ‖2 =tr(γtγ̄). Montrer que γ fixe j si et
seulement si ‖γ‖2 = 2

Indication : En utilisant les formules pour la distance, montrer que ‖γ‖2 = 2 cosh d(j, γ(j)).

(d) On s’intéresse enfin aux classes de conjugaison des éléments de PSL2(C).

(i) Soit γ1 et γ2 deux éléments de PSL2(C) différents de l’identité. Montrer que
γ1 et γ2 sont conjugués dans PSL2(C) si et seulement si tr(γ1)2 = tr(γ2)2.

(ii) Pour tout k 6= 1, on note

γk =

(√
k 0

0 1√
k

)
et

γ1 =

(
1 1
0 1

)
Montrer que chaque élément γ de PSL2(C) est conjugué à l’un des γk ou à γ1.
Puis queγk est conjugué à γk′ si et seulement si k = k′ ou k = 1

k′ .

(iii) Montrer que γ est parabolique si et seulement si γ est conjugué à γ1, que γ est
elliptique si et seulement si γ est conjugué à un γk avec |k| = 1 et que γ est
parabolique si et seulement si γ est conjugué à γk avec |k| 6= 1.

(e) Soit γ un hyperbolique de PSL2(C). On dit que γ est strictement hyperbolique
s’il existe un disque ouvert D de S2 tel que γ(D) = D. Sinon on dit que γ est
loxodromique. Montrer que

1. γ est parabolique si et seulement si trγ2 = 4.

2. γ est elliptique si et seulement si trγ2 ∈ R et trγ2 ∈ [0, 4[.

3. γ est strictement hyperbolique si et seulement si trγ2 ∈ R et trγ2 ∈ ]4,+∞[.

4. γ est loxodromique si et seulement si trγ2 ∈ C\(R ∩ ]0,+∞[ .

Exercice 1.13 (Les isométries de U3)

(a) On regarde les éléments de (z, t) ∈ U3 = C × R+ comme des quaternions via
l’identification

(z, t) ∈ U3 7−→ u = z + tj ∈ H = C + Cj,

et on rappelle que jz = zj pour z ∈ C = R + Ri ⊂ H. On définit ensuite une
application

SL2(C)× U3 −→ H∗, (g, (z, t)) 7−→ (au+ b)(cu+ d)−1,

où u = z + tj et g =

(
a b
c d

)
∈ SL2(C). Montrer que cette application définit

une action fidèle et transitive sur U3 (il sera utile de calculer explicitement (z′, t′) =
g · (z, t)).
Indication: Pour la transitivité, montrer que U3 est l’orbite de j.
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(b) Montrer que SL2(C) est engendré par les éléments de la forme(
a 0
0 1

a

)
,

(
1 b
0 1

)
, et

(
0 −1
1 0

)
.

(c) Montrer que
Isom+(U3) = PSL2(C) = SL2(C)/{±1}.

Indication: Pour montrer qu’une isométrie de U3 est dans PSL2(C) on se souvien-
dra du théorème d’extension de Poincaré de la série 1.

Exercice 1.14 (Flot géodésique dans H2)

(a) On considère le fibré tangent unitaire de H2, i.e. on considère

T 1H2 = {(z, ξ) ∈ TH2 | ‖ξ‖z = 1}.

Montrer que le groupe des isométries de H2 agit sur le fibré tangent unitaire via

g · (z, ξ) 7−→ (g · z, dzg(ξ)) =

(
g · z, 1

(cz + d)2
ξ

)
,

avec g =

(
a b
c d

)
∈ PSL2(R). Montrer que cette action est transitive, libre. En

déduire qu’il y a une identification PSL2(R) = T 1H2 et que l’on peut induire une
structure de groupe sur T 1H2.

(b) Montrer qu’étant donné un élément du fibré tangent (z, ξ) ∈ TH2, il existe une
unique géodésique γ : R → H2 de l’espace hyperbolique telle que γ(0) = z et
γ̇(0) = ξ. Montrer de plus qu’on peut la choisir telle que ‖γ̇(t)‖γ(t) = ‖ξ‖z, pour
tout t ∈ R.

(c) Montrer qu’on a une action de R sur T 1H2 de la façon suivante:

R× T 1H2 −→ T 1H2, (t, (z, ξ)) 7→ (zt, ξt) ,

où zt = γ(t) et ξt = γ̇(t), avec γ l’unique géodésique telle que γ(0) = z, γ̇(0) = ξ et
‖γ̇(t)‖ = 1 pour tout t ∈ R. La famille d’applications {ϕt}t∈R, où

ϕt : T 1H2 −→ T 1H2, ϕt(z, ξ) = (zt, ξt),

est appelée flot géodésique.

(d) En identifiant R à

A =

{(
et/2 0

0 e−t/2

)
| t ∈ R

}
,

montrer que le flot géodésique correspond au flot sur le groupe PSL2(R) donné par
multiplication à droite:

A× PSL2(R) −→ PSL2(R), (gt, g) 7−→ ggt,

où

gt =

(
et/2 0

0 e−t/2

)
.

Exercice 1.15 En dimension 2 et 3, décrire le plus précisément possible le stabil-
isateur d’un point du bord de l’espace hyperbolique dans le groupe d’isométries.
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Corrigés des exercices (ou référence)

Exercice 1.1

Exercice 1.2 Fixons d’abord les notations. Soit

φ : (Bn, d) −→ (Hn, d′)

u 7−→
(

2u1
1−‖u‖2 , . . . ,

2un
1−‖u‖2 ,

1+‖u‖2
1−‖u‖2

)
et

ψ : (Hn, d′) −→ (Bn, dK)

x 7−→
(

x1
xn+1

, . . . , xn
xn+1

)
La composée de ces deux applications vaut

ϕ(u) := ψ ◦ φ(u) =
2u

1 + ‖u‖2
,

on constate donc que ϕ envoie les droites vectorielles sur les droites vectorielles. Elle ne
fait que dilater le vecteur u d’un facteur 2

1+‖u‖2 > 1 puisque ‖u‖ < 1. On veut montrer
que pour tout u, v ∈ Bn

d(u, v) = dK(ϕ(u), ϕ(v)).

Etant donnés u, v ∈ Bn on sait qu’il existe une isométrie de (Bn, d) qui envoie u sur
l’origine et v sur un multiple positif de e1. Par définition, cette isométrie est dans
PO(n, 1) et comme les éléments de PO(n, 1) préservent le birapport, on en déduit que
PO(n, 1) ⊂ Isom(dK). Ainsi l’isométrie de (Bn, d) considérée est aussi une isométrie de
(Bn, dK). On en déduit que sans perte de généralité u = 0 et v = λe1, avec λ > 0. On
a donc ϕ(u) = 0 et ϕ(v) = 2λ

1+λ2
e1. On a alors d’une part par un lemme du cours que

d(u, v) = 2arctanh‖v‖ = 2arctanh(λ).

D’autre part, par définition de dK on a si a = −e1 et b = e1 sont les points d’intersections
de la droite passant par ϕ(u) = 0 et ϕ(v) = 2λ

1+λ2
e1 et de la boule unité:

dK(ϕ(u), ϕ(v)) =
1

2
log[a, ϕ(u), ϕ(v), b]

=
1

2
log

(
‖ − e1 − 2λ

1+λ2
e1‖‖e1 − 0‖

‖ − e1 − 0‖‖e1 − 2λ
1+λ2

e1‖

)

=
1

2
log

(
(1 + λ)2

(1− λ)2

)
= log

(
1 + λ

1− λ

)
.

Or, par une identité bien connue de trigonométrie hyperbolique (!) on sait que pour tout
z ∈ (−1, 1)

2arctanh(z) = log

(
1 + z

1− z

)
,

ce qui termine la preuve.
Pour le dernier point de l’exercice, remarquer que l’application Ψ est la composée

de la projection de Hn dans l’espace projectif, puis d’une carte affine. Puisque Kn est
totalement contenu dans l’ouvert de définition de la carte affine, il s’identifie à son image
Bn.
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Exercice 1.3

Exercice 1.4

Exercice 1.5

Exercice 1.6 La preuve s’articule en trois étapes.

(1) On montre d’abord que le volume hyperbolique est invariant sous l’action de PSL2(R).

(2) On montre le théorème dans le cas où l’un des sommets du triangle se trouve dans
∂U2.

(3) On montre le théorème dans le cas où tous les sommets du triangle se trouvent dans
U2 en se ramenant au cas précédent.

Etape 1: On écrit l’image de z ∈ U2 = {z = x + iy | y > 0} par un élément M ∈
PSL2(R) comme

M(z) =
az + b

cz + d
, avec a, b, c, d ∈ R, ad− bc = 1.

Ainsi, le jacobien de la transformation z = x+ iy 7−→M(z) = w = u+ iv est donné par

JM (x, y) =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=

∣∣∣∣dMdz
∣∣∣∣2 =

1

|cz + d|4
,

où on a utilisé les équations de Cauchy-Riemann. Ainsi si A ⊂ U2 est tel que µ(A)
existe, alors

µ(M(A)) =

∫
M

(A)
dudv

v2
=

∫
A
JM (x, y)

dxdy

v2
=

∫
A

1

|cz + d|4
|cz + d|4

y2
dxdy = µ(A).

Etape 2: On suppose que l’un des sommets du triangle T est dans ∂U2 = R ∪ {∞}. Si
ce sommet appartient à R, alors on peut l’envoyer, via une transformationM ∈ PSL2(R)
sur le point {∞} et ceci sans changer ni les angles ni le volume hyperbolique du triangle
puisque M est une transformation de Möbius et que ces dernières sont conformes par
l’exercice 2 et qu’elles préservent le volume hyperbolique par l’étape 1. Ainsi, deux
des arêtes du triangles sont des géodésiques verticales et la troisième est un arc de cercle
centré sur l’axe réel. Quitte à appliquer des transformations de Möbius du type z 7→ z+k
avec k ∈ R, et/ou z 7→ λz avec λ > 0, on peut supposer que le cercle en question est
centré en 0 et est de rayon 1 (ces transformations envoient les géodésiques verticales sur
des géodésiques verticales donc l’angle nul à l’infini est préservé) comme montré à la
figure 1.9. Les géodésiques verticales passant respectivement par A et B sont données
respectivement par x = a et x = b avec a, b ∈ R. Ainsi

µ(T ) =

∫
T

dxdy

y2
=

∫ b

a
dx

∫ ∞
√

1−x2

dy

y2
=

∫ b

a

dx√
1− x2

=

∫ β

π−α

− sin θdθ

sin θ
= π − α− β.

Remarquons que la technique utilisée pour cette étape marche tout aussi bien si deux
voire trois sommets sont dans ∂U2 ∪ {∞}; il suffit en effet d’utiliser un élément de
PSL2(R) pour envoyer un sommet sur le point {∞} puis de faire le même raisonnement
avec α = 0 ou α = β = 0.
Etape 3: On suppose maintenant que les trois sommets du triangle T sont dans U2.
L’idée est d’exprimer T comme différence de deux triangles ayant au moins un sommet à
l’infini et ainsi de se ramener au cas précédent. Dans la figure 1.10, l’aire (hyperbolique)
du triangle T est la différence des aires des triangles T1 de sommets A,C et D, et T2 de
sommets B,C et D. Ainsi, si θ est l’angle B̂CD on a

µ(T ) = µ(T1)− µ(T2) = π − α− (γ + θ)− [π − θ − (π − β)] = π − α− β − γ.
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Figure 1.9: Le triangle avec un sommet en ∞

Figure 1.10: Le triangle avec tous les sommets dans U2

Exercice 1.7

Exercice 1.8

Exercice 1.9

Exercice 1.10

Exercice 1.11

Exercice 1.12

Exercice 1.13

Exercice 1.14

Exercice 1.15



Chapter 2

Intermède : Groupe fondamental et
revêtements

Par convention, tous les espaces topologiques considérés seront des variétés topologiques.
On peut bien sûr développer une théorie similaire dans un contexte plus général, voir
Hatcher et Paulin (à qui j’emprunte d’ailleurs beaucoup pour ces notes).

2.1 Groupe fondamental

Définition 2.1.1. Soit f et g deux application continues entre 2 variétés topologiques X
et Y . On dit que f est homotope à g et on note f ∼ g s’il existe une application continue
H : X × [0, 1]→ Y telle que, pour tout x ∈ X,

H(x, 0) = f(x) et H(x, 1) = g(x).

Si A ⊂ X est une sous-variété de X, on dit que f et g sont homotopes relativement
à A si de plus, pour tout a ∈ A, l’application t 7→ H(a, t) est constante (en particulier,
cela impose que f(a) = g(a) pour tout a ∈ A).

Définition 2.1.2. Un espace X est dit contractile s’il est non vide et si idX est homotope
à une application constante.

Par exemple, si X est convexe, alors X est contractile (et se contracte sur n’importe
lequel de ses points). En effet, soit x0 ∈ X, alors H(t, x) = tx + (1 − t)x0 est une
homotopie de idX à l’application constante en x0.

Définition 2.1.3. Une variété X est dite simplement connexe si X est connexe et si toute
application continue f : S1 → X se prolonge en une application continue f̄ : B2 → X.

On montrera en exercice qu’une variété contractile est simplement connexe mais que
la réciproque est fausse.

Définition 2.1.4. Soit f : X → Y une application continue. On dit que c’est une
équivalence d’homotopie s’il existe une application continue g : Y → X telle que

• f ◦ g ∼idY et

• g ◦ f ∼idX

Dans ce cas, on dit que X et Y ont le même type d’homotopie.

Par exemple, dire qu’une variété X est contractile est équivalent à dire que X a le
type d’homotopie d’un point.

42
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Figure 2.1: Homotopies

Définition 2.1.5. Soit X une variété et A une sous-variété de X. On dit que X se
rétracte par déformations sur A s’il existe une application r : X → A telle que

• r ◦ i =idA et

• iX ◦ r ∼idA (iX est l’injection de A dans X).

Définition 2.1.6. Un chemin est une application continue α : [0, 1]→ X. L’origine de
α est α(0) et son extrémité est α(1). On dit de plus que α est un lacet si son origine est
égal à son extrémité. On note [α] la classe d’homotopie d’un chemin α.

Et enfin

Définition 2.1.7. Soit α et β deux chemins dans X tels que α(0) = β(1).

• Le chemin inverse de α est le chemin noté α−1 et défini par

α−1 : [0, 1] −→ X
t 7−→ α(−t) .

• La concaténation de α et β est le chemin noté α · β (noter bien l’ordre des deux
chemins; la notation n’est pas compatible avec la convention de notation de la
composition des applications) défini par

α · β : [0, 1] −→ X

t 7−→
{
α(2t) si t 6 1/2
β(2t− 1) si t > 1/2

Théorème 2.1.8. Soit X une variété topologique; on note π1(X,x) l’ensemble des
classes d’homotopies de lacets dans X d’origines x ∈ X. La concaténation des chemins
donne à π1(X,x) une structure de groupe. Si X est connexe, alors π1(X, ) et π1(X, y)
sont isomorphes pour tout couple (x, y) de points de X. On appelle l’un de ces groupes
le groupe fondamental de X
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La dernière assertion signifie que le groupe fondamental de X s’identifie à π1(X,x)
dès que l’on fixe un point base x ∈ X.

Figure 2.2: La structure du groupe fondamental détecte les trous

Preuve: • Associativité : soit α un chemin joignant x à y, β un chemin joignant
y à z et γ un chemin joignant z à w. Il s’agit de montrer que (α ·β) · γ et α · (β · γ)
sont homotopes. Pour cela, on change continûment les vitesses de parcours des
chemins

Figure 2.3: Les chemins α · (β · γ) et (α · β) · γ sont homotopes

Soit en effet l’homotopie H définie par

H(t, s) =


α
(

4t
1+s

)
si 0 6 t 6 1+s

4

β(4t− s− 1) si 1+s
4 6 t 6 2+s

4

γ
(

4t−s−2
2−s

)
si2+s

4 6 t 6 1

• Élément neutre : On montre que la classe du lacet constant en x est l’élément
neutre ou même plus généralement, que si α est un lacet joignant x à y et si cx
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et cy sont les lacets constants en x et y respectivement, alors cx · α et α · cy sont
homotopes. Pour cela, il suffit de montrer que α · cy est homotope à α. L’idée est
de parcourir α de plus en plus lentement et de rester de moins en moins longtemps
sur y. En effet soit H l’homotopie

H(t, s) =

{
α
(

2t
1+s

)
si 0 6 t 6 1+s

2

y si1+s
2 6 t 6 1

• Inverse : Voyons déjà que la classe de c−1 ne dépend pas du représentant c de
[c]. Cela provient du fait que si (t, s) 7→ H(t, s) est une homotopie de α à β, alors
(t, s) 7→ H(1 − t, s) est une homotopie de α−1 à β−1. Pour montrer que

∣∣c−1
∣∣ est

l’inverse de |c|, on montre en fait plus généralement que si α joint x à y, alors α·α−1

et α−1 · α sont homotopes à cx et cy respectivement. Pour construire l’homotopie,
l’idée est de passer un peu de temps sur x (de moins en moins), puis de parcourir
le chemin α puis α−1 mais de s’arrêter en cours de route et faire demi-tour de plus
en plus près de x et enfin de rester sur x jusqu’à la fin du temps de parcours. En
effet, soit H l’homotopie

H(t, s) =


x si 0 6 t 6 s

2
α (2t− s) si s2 6 t 6 1

2
α (2− 2t− s) si 1

2 6 t 6 2−s
2

x si2−s2 6 t 6 1

Enfin, si X est connexe, alors X est connexe par arcs car X est une variété. Si α est
un chemin de x à y, alors

α−1π1(X,x)α = π1(X, y)

avec les conventions de notation de la concaténation.

Le groupe fondamental est construit pour donner des informations sur les classes
d’homotopies de variétés topologiques (c’est un foncteur de la catégorie des espaces
topologiques dans celle des groupes abéliens) :

Proposition 2.1.9. Soit f : X → Y une application continue.

• Si α et β sont deux chemins homotopes dans X, alors f ◦α et f ◦β sont homotopes
dans Y .

• Si f et g sont homotopes, alors π1(Y, f(x)) et π1(Y, g(x)) sont isomorphes.

• Si f est une équivalence d’homotopie, alors π1(X,x) ' π1(Y, f(x)).

Enfin, on montre que le groupe fondamental permet de détecter la simple connexité
de X.

Proposition 2.1.10. La classe |α| de α est triviale dans π1(X,x) si et seulement si α
s’étend continûment en une application ᾱ : B2 → X. En particulier, π1(X,x) = {1} si
et seulement si X est simplement connexe.

2.2 Revêtements

2.2.1 Généralités

Définition 2.2.1. Soit X et B deux variétés topologiques et f : X → B une application
continue. On dit que f est un revêtement de X sur B si, pour tout b ∈ B, il existe un
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voisinage V de b dans B, un sous-espace discret et non vide D de X et h : V × D →
f−1(V ) un homéomorphisme de sorte que le diagramme suivant commute

V ×D h //

pr1
%%

f−1(V )

f

��
V

Dans cette situation, la terminologie veut que l’on dise que B est la base du fibré, que
X en est l’espace total, que f−1(y) est la fibre au-dessus de y, que V est un voisinage
distingué et que h est une trivialisation locale.

Le lecteur a peut-être déjà rencontré une notion assez proche. Si on remplace l’espace
discret D par un espace topologique quelconque F , on dit que f est un fibré localement
trivial. Si F est un espace vectoriel (on dit alors que f est un fibré vectoriel), le cours
de géométrie différentielle se propose de construire plusieurs exemples (fibré tangent,
cotangent,...).

Exemple Soit
f : R −→ S1

t 7−→ e2iπt

Montrons que f est un revêtement. Pour tout x = e2iπθ ∈ S1, soit Vx = S1 − {−x}.
Alors

f−1(V ) =
⋃
k∈Z

]θ + (2k − 1)π, θ + (2k + 1)π[ .

et la restriction de f à chaque ]θ + (2k − 1)π, θ + (2k + 1)π[ est un homéomorphisme.

Figure 2.4: Enrouler R sur le cercle est un revêtement
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Définition 2.2.2. Soit f : X → B et f ′ : X ′ → B deux revêtement de mêmes bases.
Un morphisme de revêtements de f sur f ′ est une application φ : X → X ′ qui envoie les
fibres de f sur celles de f ′, c’est-à-dire qui fait commuter le diagramme suivant

X
φ //

f   

X ′

f ′~~
B

Nous verrons enfin en exercice qu’un revêtement est un homéomorphisme local et
que la réciproque est très souvent vraie.

2.2.2 Actions de groupes topologiques

Définition 2.2.3. Un groupe topologique G est un groupe muni d’une topologie telle que

G×G −→ G
(x, y) 7−→ xy−1

soit une application continue. Un morphisme de groupes topologiques est un morphisme
de groupes qui est une application continue.

Définition 2.2.4. Soit X une variété topologique et soit G un groupe topologique. Une
action continue de G sur X est une application continue G × X → X telle que, pour
tous g, g′ et tout x,

• g′(gx) = (g′g)x et

• ex=x

Le graphe de l’action est l’application

gr : G×X −→ X ×X
(g, x) 7−→ (gx, x)

.

On dit qu’une action est propre si son application graphe est propre

Rappelons qu’une application continue est dite propre si l’image inverse de tout
compact est compact. caractérisation de Paulin.

Proposition 2.2.5. Une action est propre si et seulement si, pour tout compact K de
X, il y a peu d’élément de G qui déplacent peu K, c’est-à-dire que l’ensemble

{g ∈ K, K ∩ gK 6= ∅}

est compact.

Lorsque G est discret (ce qui est souvent le cas dans la suite), cette condition est
équivalente au fait que {g ∈ K, K ∩ gK 6= ∅} est fini.

Preuve: Supposons l’action propre et prenons un compact K de X. Alors K ×K est
un compact de X ×X, puis

gr−1(K ×K) = {(g, x), (gx, x) ∈ K ×K}

et compact, donc pr1
(
gr−1(K ×K)

)
aussi et

pr1

(
gr−1(K ×K)

)
= {g ∈ K, K ∩ gK 6= ∅} .

Inversement, si L est un compact de X × X, soit K un compact de X tel que L ⊂
K × K (par exemple K =pr1(L)∪pr2(L)). Alors gr−1(L) est un fermé contenu dans
{g ∈ K, K ∩ gK 6= ∅} ×K qui est compact. Donc gr−1(L) est compact.
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Définition 2.2.6. On dit que l’action est libre si l’application gr est injective, c’est-à-
dire, si pour tout x ∈ X, son stabilisateur est trivial :

Gx = StabG(x) := {g ∈ G, gx = x} = {1} .

Théorème 2.2.7. Soit G un groupe discret agissant librement et proprement sur une
variété séparée X. Alors

(i) Pour tout x ∈ X, il existe un voisinage V de x tel que gV ∩V = ∅ pour tout g 6= e.

(ii) Chaque orbite est discrète.

(iii) La projection canonique π : X → X/G est un revêtement et le quotient X/G est
une variété.

Preuve: (i) L’application gr est, par hypothèse, continue, injective et fermée (car
propre). C’est donc un homéomorphisme sur son image. L’application gr envoie
{e} × X sur la diagonale et {e} × X est ouvert (car G est discret donc {e} est
ouvert). Donc la diagonale est un ouvert de Im gr. Soit donc x ∈ X. Il existe un
ouvert V autour de x tel que V ×V ∩ Im gr soit contenu dans la diagonale. Ensuite
gr−1(V × V ) ⊂ {e} ×X donc gV ∩ V est non vide uniquement lorsque g = e.

(ii) découle immédiatement de (i).

(iii) Soit V comme dans (i). Alors U = π(V ) convient (c’est un ouvert distingué) pour
la définition de fibré et convient aussi pour fabriquer des cartes de X/G, quitte
à le rétrécir un peu. Il suffit en effet de prendre V suffisamment petit pour qu’il
soit contenu dans un ouvert de cartes. On construit ensuite des cartes de X/G en
utilisant le fait que U est homéomorphe à V .

Remarque On peut montrer aussi que l’espace des orbites X/G est séparé. À rédiger,
Godbillon p.29

2.2.3 Relèvements

Soit p : X → B un revêtement et soit f : Y → B une application continue. Un
relèvement de f est une application continue f̄ : Y → X telle que le diagramme suivant
commute

X

p

��
Y

f̄
>>

f
// B

Un cas particulier et celui où Y = [0, 1]. On parle alors de relèvement de chemins. Dans
ce contexte, on se pose les questions suivantes

1. f̄ existe-t-elle et, si oui, est-elle unique ?

2. Deux chemins homotopes se relèvent-ils en des chemins homotopes ?

Commençons tout de suite par l’unicité.

Proposition 2.2.8. Deux relèvements qui coïncident en un point sont identiques.
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Preuve: Soit donc f ′ et f ′′ deux relèvements qui coïncident en un point. On définit

A0 =
{
u ∈ Y, f ′(u) = f ′′(u)

}
et A1 =

{
u ∈ Y, f ′(u) 6= f ′′(u)

}
Il suffit de montrer que A0 et A1 sont ouverts puisque A0 est non vide par hypothèse.

Soit u ∈ A0, U un ouvert distingué autour de f(u) et h : U × D → p−1(U) la
trivialisation locale. Il existe d ∈ D tel que f ′(u) ∈ h(U × {d}) = Vd. Alors f ′−1(Vd) ∩
f ′′−1(Vd) est un ouvert de A0.

Soit maintenant u ∈ A1. Alors il existe d′ et d′′ tels que f ′(u) ∈ Vd′ et f ′′(u) ∈ Vd′′ .
Puis f ′−1(Vd′) ∩ f ′′−1(Vd′′) est un ouvert de A1.

Remarque À la fin de cette preuve, nous montrons que le quotient X/G est une variété.
C’est en fait un phénomène général. On aurait pu en effet, dans le définition même d’un
revêtement, supposer seulement que, soit l’espace total, soit la base est une variété et
le démontrer pour l’autre espace. Pour la base, c’est analogue à ce que l’on vient de
faire. Pour l’espace total, il suffit de prendre un point x dans X, de le projeté sur B,
de choisir autour de π(x) un ouvert U qui est à la fois un ouvert de carte et un ouvert
trivialisant (en prenant l’intersection), et, puisqu’il existe autour de x un ouvert V qui
est homéomorphe à U , cela fournit une carte en x.

Chemins et homotopies

Proposition 2.2.9. Soit p : X → B un revêtement et soit f : Y → B une application
continue (on suppose Y connexe) admettant un relèvement f̄ : Y → X. Pour toute
application continue h : Y × [0, 1]→ B telle que h(·, 0) = f , il existe un relèvement h̄ de
h tel que h̄(·, 0) = f̄ .

Preuve: Le résultat est évident lorsque p est trivial car l’image de f̄ est alors contenu
dans un ouvert de la forme B×{d}, homéomorphe à B. La suite de la preuve vise à con-
struire h̄ en recollant des morceaux obtenus dans les trivialisations locales du revêtement
(pour lesquelles la remarque précédente s’applique). On procède en deux étapes : dans
un premier temps, on fixe y et on raisonne en découpant l’intervalle [0, 1] en morceaux.
Puis on recolle les différents h(Uy × [0, 1]).

Première Étape : Soit y ∈ Y . Il existe un entier ny et un voisinage Uy de Y tel
que

h

(
Uy ×

[
i− 1

ny
,
i+ 1

ny

])
soit contenu dans un ouvert distingué Vy,i de B, voisinage de h

(
y, i

ny

)
(on peut choisir

ny par compacité de [0, 1]). On veut maintenant relever h dans Vy,i; l’ennui c’est que
ce relevé n’est pas unique. On procède alors par récurrence sur i, par recollement et on
peut initialiser à l’aide du relevé de f . Soit donc ḡ0 un relèvement de h|Uy×

[
0, 1
ny

] tel

que ḡ(z, 0) = f̄(z). Puis on construit ḡi par récurrence comme relevé de h|Uy×
[
i−1
ny

, i+1
ny

]
tel que ḡi(z, i

ny
) = ḡi−1(z, i

ny
) (on redémarre au même endroit dans la fibre). Noter que

la construction est rendue possible car les ensembles Uy ×
[
i−1
ny
, i+1
ny

]
s’intersectent. En

recollant tous ces relevés, on obtient un relèvement ḡy de h|Uy×[0,1] tel que ḡy(z, 0) = f̄(z).
Deuxième étape : Vérifions que l’on peut recoller les ḡy. Supposons donc qu’il

existe y 6= y′ tel que Uy ∩ Uy′ 6= ∅ et montrons que ḡy est compatible avec ḡy′ . Soit
z ∈ Uy ∩ Uy′ . Par construction ḡy(z, 0) = ḡy′(z, 0) = f̄(z). On a alors deux relèvements
de h|{z}×[0,1] qui coïncident en un point : ils sont donc égaux ! Puisque z est quelconque,
on conclut que ḡy et ḡy′ coïncident sur Uy ∩ Uy′ × [0, 1].
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Corollaire 2.2.10. 1. (existence de relevés de chemins). Soit p : X → B un revête-
ment. Pour tout chemin α : [0, 1] → B d’origine b et tout x ∈ p−1(b), il existe un
unique chemin ᾱ : [0, 1]→ X tel que α(0) = x et p ◦ ᾱ = α.

(Preuve : Un chemin est une homotopie entre deux points.)

2. Si α et β sont homotopes dans B et si ᾱ(0) = β̄(0), alors ᾱ et β̄ sont homotopes
dans X.

3. Le morphisme p∗ : π1(X,x)→ π1(B, b) est injectif.

La dernière propriété signifie que le groupe fondamental diminue lorsque l’on "monte"
de B à X. C’est une propriété très importante de la théorie des revêtements : plus on
est haut, moins il y a de topologie. Trouver un revêtement d’une variété B, c’est donc
trouver une façon de "déplier" B pour en faire baisser la complexité topologique.

Théorème 2.2.11 (du relèvement). Soit p : X → B un revêtement, Y une variété
connexe et f : Y → B une application continue. Soit y ∈ Y , b = f(y) et x ∈ p−1(b).
Alors, il existe un relèvement f̄ (nécessairement unique) tel que f̄(y) = x si et seulement
si

f∗(π1(Y, y) =⊂ p∗(π1(X,x))

La preuve de ce théorème est rédigée comme exercice.

2.2.4 Action du groupe fondamental de la base sur la fibre

Soit p : X → B un revêtement, b ∈ B et F = p−1(b) la fibre. Prenons [g] ∈ π1(B, b) et
x ∈ F . Il existe un unique relevé ᾱ de g dans X tel que ᾱ(0) = x, d’après ce qui précède.
De plus la classe de α ne dépend que de la classe de g dans π1(B, b), i.e de [g]. On note
x · g = ᾱ(1). Puisque p(ᾱ(1)) = g(1) = b, on sait que ᾱ(1) ∈ F et on vérifie facilement
que

π1(B, b)× F −→ F
([g] , x) 7−→ x · g

est une action (à droite).

Proposition 2.2.12. Le stabilisateur de x ∈ F pour l’action de π1(B, b) sur la fibre F
est p∗(π1(X,x)) (c’est-à-dire les lacets en bas qui proviennent de lacets en haut).

Preuve: C’est presque évident.

• Soit g ∈ π1(B, b) qui fixe x. Alors son relevé est un lacet ᾱ. Puis p∗(ᾱ) = g donc
Stab(x) ⊂ p∗(π1(X,x)).

• Inversement, si g ∈ π1(X,x) et si β est un représentant de g, alors β est le relevé
de p ◦ β par unicité. Il fixe bien x.

Proposition 2.2.13. On suppose B connexe. L’application qui à x ∈ F associe sa
composante connexe dans X induit une bijection

F/π1(B, b) ' {composantes connexe de X} = π0(X).

Ce que dit cet énoncé, c’est que l’action de π1(B, b) sur la fibre permet de visiter
toute la composante connexe de x et ne permet pas d’en sortir.
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Figure 2.5: Action du groupe fondamental de la base sur la fibre

Preuve: • L’application F → π0(X) est surjective. En effet, soit y ∈ X. Il existe
un chemin entre p(y) et b puisque B est connexe (et que connexe est équivalent à
connexe par arcs pour des variétés). Le relèvement de ce chemin partant de y joint
y à F .

• On montre ensuite que x et x′ déterminent la même composante connexe si et
seulement s’ils sont reliés par un relevé de π1(B, b) (i.e x′ = x · g). Ainsi, d’une
part si x′ = x · g, alors il existe un chemin de x′ à x par définition de l’action.
D’autre part, s’il existe un chemin de α de x′ à x, alors [p ◦ α] convient (c’est bien
la classe d’un lacet).

Ainsi, si l’on suppose X connexe, on sait maintenant que l’action de π1(B, b) sur la
fibre est transitive. Ajoutant à cela, la description du stabilisateur, on obtient :

Corollaire 2.2.14. On suppose X connexe. Alors

F = π1(B, b)/p∗(π1(X,x))

Puis, en particulier,

Corollaire 2.2.15. Si X est connexe, alors p est un homéomorphisme si et seulement si
p∗(π1(X,x)) → π1(B, b) est un isomorphisme de groupes (on sait déjà qu’il est injectif,
sa surjectivité aurait donc suffit).

Ainsi donc, pour deux variétés en situation de revêtement, le groupe fondamental
détermine complètement la classe d’homéomorphie (en particulier, le type d’homotopie
et le type d’homéomorphie coïncident).
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Corollaire 2.2.16. Un revêtement connexe par arcs d’un espace simplement connexe
est un homéomorphisme

On ne peut donc pas monter plus haut qu’un espace simplement connexe.

Terminons ce paragraphe en présentant une méthode pour calculer des groupes fon-
damentaux de variétés. Supposons qu’un groupe discret agisse proprement et librement
sur une variété simplement connexe X et soit B = G\X la variété quotient. Alors
π1(B, b) = G. En effet, la fibre de p : X → X/G est G.

Exemple La variété R est simplement connexe (car contractile) et Z agit sur R pro-
prement et librement. Le quotient R/Z est homéomorphe au cercle S1. On obtient
donc

π1(S1) = Z.
De même pour les tores : π1(Tn) = Zn ou encore pour les espaces projectifs : puisque
Sn est simplement connexe et que Sn → Sn/ {±1} est un revêtement, on obtient

π1(Pn(R)) = Z/2Z.

2.2.5 Revêtement universel

On sait maintenant que si p : X → B est un revêtement, alors π1(X) s’injecte dans π1(B).
Par ailleurs si B est simplement connexe, tout revêtement de B est un homéomorphisme.
Inversement, on montre dans cette section qu’il existe toujours un revêtement simplement
connexe pour toute variété et que ce revêtement revêt tous les revêtements de la variété.

Définition 2.2.17. Soit B une variété connexe. Un revêtement universel de B est un
revêtement π̃ : B̃ → B d’espace totale B̃ connexe et vérifiant la condition suivante : pour
tout revêtement p : X → B avec X connexe et pour tous b ∈ B̃ et x tel que π̃(b) = p(x),
il existe un morphisme de revêtement Φ : B̃ → X tel que Φ(b) = x.

Remarque 1. Le morphisme Φ est unique (car il est l’unique relevé de son projeté).

2. Un revêtement universel est unique (en prendre deux et montrer que les applications
Φ correspondantes sont inverses l’une de l’autre).

3. Un revêtement simplement connexe est universel (d’après le théorème du relève-
ment).

Le théorème suivant est délicat mais très important.

Théorème 2.2.18. Soit B une variété (séparée) connexe. Alors B admet un revêtement
universel,

Preuve: Soit b ∈ B et soit B̃ l’ensemble des classes d’homotopies à extrémités fixées
de chemins dans B d’origines b. On a une application

π̃ : B̃ −→ B
[β] 7−→ β(1)

.

Tout revient à vérifier que c’est un revêtement universel.
L’application π̃ est surjective car B est connexe par arcs. On munit B̃ de la topologie

(quotient de la topologie) compacte ouverte. Il suit que π̃ est continue. Le groupe
(discret) G = π1(B, b) agit sur B̃ par

G× B̃ −→ B̃
([α] , [β]) 7−→ [α · β]
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Cette action est continue car π1(B, b) est discret et libre car si [α · β] = [β], alors [α]
est la classe du lacet constant (procéder comme lorsque l’on montrait que le π1 est un
groupe). Les orbites de G sont exactement les fibres de π̃ car on ne change pas l’extrémité
du chemin lorsque l’on fait agir G et si π̃([β′]) = π̃([β]), alors β′β−1 ∈ G. Donc π̃ induit
par passage au quotient, une application f : G\B̃ → B tel que le diagramme suivant
commute

B̃

p
��

π̃

!!
G\B̃

f
// B

et f est continue (par définition de la topologie quotient) et bijective (par le théorème
de factorisation).

La stratégie de preuve devient maintenant claire. Il faut montrer que f est un
homéomorphisme et que p est un revêtement. Pour ce dernier point, on utilise les critères
généraux dans la situation d’une action de groupes : il s’agit de voir que l’action est
propre et libre (ce qu’on a déjà fait). Enfin, il faudra montrer que B̃ est simplement
connexe, ce qui assurera que c’est un revêtement universel.

On montre simultanément que l’action est propre et que f est un homéomorphisme.

Lemme 2.2.19. Pour tout [β] dans B̃, il existe un voisinage ouvert O = O[β] de [β] tel
que

• Pour tout g ∈ G, si O ∩ gO est non vide, alors g = e.

• π̃(O) est ouvert dans B.

Preuve: Soit donc [β] dans B̃. Par compacité de [0, 1], il existe n ∈ N et des ouverts
Vi tels que

(i) Tout lacet dans Vi est homotope au lacet constant (B est une variété donc locale-
ment Rn, donc localement simplement connexe).

(ii) β
([

i
n ,

i+1
n

])
⊂ Vi.

Soit O′ l’ouvert de l’espace des chemins dans B d’origines b formé des chemins β′ tels
que β′

([
i
n ,

i+1
n

])
⊂ Vi et β′

(
i
n

)
appartienne à la même composante connexe par arcs que

β
(
i
n

)
dans Vi ∩Vi−1 (les composantes connexes par arcs sont ouvertes donc la condition

est ouverte). Soit β′ et β′′ dans O′ tels que β′(1) = β′′(1). Soit, pour tout i un chemin
γi dans Vi∩Vi−1 joignant β′

(
i
n

)
à β′′

(
i
n

)
(et γ0, γn constants). Pour simplifier (un peu)

les notations, on pose β′′i = β|[ in ,
i+1
n ]. Soit c le chemin

c =
(
γ0 · β′′0 · γ−1

) (
γ1 · β′′1 · γ−1

2

)
· · ·
(
γn−1 · β′′n−1 · γ−1

n

)
.

Alors β′′ ∼ c ∼ β′.
On conclut que deux chemins dans B suffisamment proches et ayant mêmes ex-

trémités sont homotopes. Cela justifie de considérerO, l’ensemble des classes d’homotopie
de chemins de O′. Cet ensemble O est ouvert (car le saturé de O est égal à O′ qui est
ouvert). Montrons que O convient. Soit g ∈ G et [β′], [β′′] ∈ O tel que [β′] = g [β]. Alors
β′(1) = β′′(1) et en fait [β′] = [β′′]. Comme G agit librement, cela n’est possible que si
g = e. Enfin, il est clair que π̃(O) = Vn−1.

Lemme 2.2.20. L’application π̃ est ouverte, B̃ est séparée, l’action de G sur B̃ est
propre et f est un homéomorphisme.

Preuve: • π̃ est ouverte : c’est une application directe du lemme précédent.
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• B̃ est séparée : Soit x et y dans B̃. Si π̃(x) 6= π̃(y), alors x et y ont des voisinages
distincts car B est séparée et π̃ est continue. Si π̃(x) = π̃(y), alors il existe g ∈ G
tel que y = gx. Donc Ox et Ogx sont des voisinages distincts d’après le lemme
précédent (sauf si g = e, auquel cas x = y).

• L’action est propre : On rappelle qu’une application continue f : X → Y est
propre si et seulement si f est fermée et l’image réciproque d’un point est compacte.

On considère alors l’application gr: G × B̃ → B̃ × B̃ comme avant. L’image
réciproque d’un point est un point car l’action est libre. Pour la deuxième condition,
on commence par constater queG\B̃ est séparé car f est continue et bijective et que
B est séparé (c’est comme pour montrer que B̃ est séparé en utilisant la continuité
de π̃). Donc la diagonale de G\B̃ × G\B̃ est fermée. Puis l’image de gr (qui est
(p × p)−1(∆) où p est la projection de B̃ sur G\B̃ et ∆ la diagonale) est fermée.
D’autre part on peut expliciter l’application gr−1 : c’est

gr−1 : Im(gr) −→ G× B̃
([β] , [β′]) 7−→

([
β′β−1

]
, [β]

)
et elle est continue. On conclut que gr est fermée.

• f est ouverte : On vient de voir que en particulier que p : B̃ → G\B̃ est un
revêtement donc en particulier un homéomorphisme local et en tout cas ouverte.
Puisque π̃ est continue, on en déduit que f est ouverte donc un homéomorphisme

Il ne reste plus qu’à montrer que B̃ est simplement connexe. Il faut déjà voir que B̃
est connexe par arcs. Pour cela, soit c un chemin d’origine b et montrons que c peut être
relié à cb le lacet constant en b. Pour cela on considère le chemin dans B̃ (un chemin de
chemins...) donné par

(s, t) 7→ c(st)

(c’est-à-dire que l’on parcoure de moins en moins de portion de chemin c). Ceci est bien
un chemin d’origine cb et d’extrémité c.

Enfin, soit γ un lacet basé en [cb] dans B̃. On va contracter γ sur [cb]. L’argument
est simple mais abstrait (une homotopie est un chemin de chemins de chemins...) Pour
faire ça, on utilise la propriété de relevé des chemins maintenant que l’on sait que l’on a
situation de revêtement π̃ : B̃ → B : on projette γ dans B̃, on a donc un vrai chemin
dans B, que l’on peut relever. Ce relevé est l’homotopie voulue. Plus explicitement, pour
chaque chemin c, d’origine b, on note t 7→ [ct] le relèvement de c d’origine [cb]. Puisque
γ est le relèvement de π̃ ◦ γ d’origine [cb], on a par unicité, pour tout t ∈ [0, 1],

γ(t) = [(π̃ ◦ γ)t]

Alors,
H(s, t) = [((π̃ ◦ γ)t)s]

est une homotopie entre [cb] et γ.

2.2.6 Théorie de Galois des revêtements

La théorie des revêtements est une théorie bien aboutie puisque l’on parvient à classifier
tous les revêtements (connexes) au dessus d’une base fixée. Ce théorème de classification
ressemble beaucoup à la classification des extensions de corps au-dessus d’un corps fixé.
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Rappelons en effet que la théorie de Galois classique consiste à montrer que l’on peut
classifier les sous-extensions d’une extension

K

k

à l’aide des sous-groupes de Autk(K). On montre qu’il y a une bijection entre l’ensemble
des extensions L (respectivement galoisiennes) avec

K

L

k

et les sous-groupes de Autk(K) (respectivement les sous-groupes distingués).
Dans ce paragraphe, on montre qu’il existe une correspondance analogue dans le

contexte de
X

π
��
B

un revêtement. Notre objectif est de trouver une bijection entre les revêtements p : X →
B tels que

B̃
Φ

��
π̃

��

X

p   
B

et les sous-groupes de π1(B) et de préciser quelle classe d’objet correspond aux sous-
groupes distingués. L’application Φ fait référence à la définition du revêtement universel.

Remarque Dans ce contexte, le revêtement universel joue le rôle de la clôture algébrique
d’un corps k.

écrire les preuves

Théorème 2.2.21. Soit p : X → B un revêtement avec X connexe et soit x ∈ X,
b = p(x) et F = p−1(b). Les assertions suivantes sont équivalentes.

(i) L’action de Aut(p) sur F est transitive.

(ii) p∗(π1(X,x)) est distingué dans π(B, b).

(iii) p∗(π1(X, y)) = p∗(π1(X, z)) pour tout y, z ∈ F .

(iv) Pour tout lacet α de B en b, ou bien tout relèvement de α est un lacet, ou bien
aucun relèvement de α n’est un lacet.

(v) Il existe un groupe (discret) Γ agissant librement et proprement sur X et un homéo-
morphisme f : Γ\X → B
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On dit alors (par analogie) que le revêtement est galoisien. L’équivalence entre (ii)
et (v) est la plus importante et correspond à la caractérisation géométrique que nous
cherchions : un revêtement p : X → B est galoisien si B s’obtient comme l’espace des
orbites d’un groupe discret agissant sur X.

2.3 Exercices corrigés pour le chapitre 2

Énoncés des exercices

Exercice 2.1 Montrer qu’une variété contractile est simplement connexe. Discuter
la réciproque.

Exercice 2.2 (Homéomorphismes locaux et revêtements)
Soit f : X → Y une application continue. On dit que f est un homéomorphisme

local si pour tout x ∈ X, il existe un voisinage U de x tel que f|U : U → f(U) soit un
homéomorphisme.

1. On suppose que X et Y sont deux ouverts de Rn, que f est différentiable et
que, pour tout x ∈ X, dxf est inversible. Quel théorème affirme que f est un
homéomorphisme local ?

2. On suppose que f est un revêtement. Montrer que f est un homéomorphisme local.

On cherche ensuite des conditions qui permettent de conclure à la réciproque.

3. Montrer que la réciproque est fausse en général.

4. On suppose que f est un homéomorphisme local et l’une des deux conditions suiv-
antes

(i) Le cardinal de chaque fibre f−1(y) est fini constant non nul.

(ii) f est propre et Y est connexe.

Montrer qu’alors f est un revêtement.

Exercice 2.3 (Séparabilité, exemples)

1. Montrer que si X et G sont séparés (de Hausdorff) et si G agit proprement sur X,
alors les orbites sont fermées et l’espace des orbites X\G est séparé.

2. On suppose le groupe G fini (et discret) et l’action sur X libre. Montrer que la
projection canonique X → X\G est un revêtement à card(G) feuillets.

3. En déduire que RPn est revêtu par la sphère. Qu’appelle-t-on un espace lenticulaire
?

4. Soit H un sous-groupe discret d’un groupe topologique séparé G. Montrer que H
est fermé et la projection canonique G→ H\G est un revêtement.

5. En déduire que Rn revêt le tore.
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Exercice 2.4 (Construction de surfaces hyperboliques)
Soit g ≥ 2 un entier.

(a) Soit Σg la surface topologique orientable de genre g (i.e. la somme connexe de g
tores). Montrer que Σg se réalise comme quotient d’un 4g-gones par des identifica-
tions de faces (faire un dessin en s’inspirant du tore).

(b) Dans le disque de Poincaré D, montrer qu’il existe un polygone hyperbolique régulier
P à 4g côtés dont tous les angles intérieurs valent θ = π

2g .

(c) Soient p1
1, . . . , p

1
4, . . . , p

g
1, . . . , p

g
4 les 4g sommets de P . Montrer qu’il existe σ1, . . . , σ2g

des isométries hyperboliques telles que σ2i−1(pi1) = pi4, σ2i−1(pi2) = pi3 et σ2i(p
i
2) =

pi+1
1 , σ2i(p

i
3) = pi4 pour i = 1, . . . , g.

(d) Soit H := 〈σ1, . . . , σ2g〉 < PSL2(R). Montrer que H est discret et agit proprement
sur D. En déduire que la projection canonique π : D → D

/
H est le revêtement

universel de H.

(e) Montrer que Σg peut être munie d’une métrique localement hyperbolique.

Exercice 2.5 (Groupe fondamental du cercle et applications)

(a) Quels théorèmes du cours permettent de montrer les deux faits suivants :

• Si f : [0, 1] → S1 est une application continue, pour tout t0 ∈ R tel que
f(0) = e2iπt0 , il existe une et une seule application continue f̃ : [0, 1]→ R telle
que f̃(0) = t0 et f(t) = e2iπf̃(t) pour tout t ∈ [0, 1].

• Si h : [0, 1] × [0, 1] → S1 et si f : [0, 1] → R est une application continue
telle que h(0, t) = e2iπf(t) pour tout t ∈ [0, 1], alors il existe une application
h̃ : [0, 1]× [0, 1]→ R telle que h(0, t) = f̃(t) et h(s, t) = e2iπh̃(s,t)

(b) Montrer que pour tout x ∈ S1, l’application ϕx : π1(S1, x) → Z définie par [γ] 7→
γ̃(0)− γ̃(1) où γ̃ est un relevé de γ est un isomorphisme de groupes.

Soit f : S1 → S1 et x un point de S1. Posons y = f(x). La composition des
morphismes de groupes ϕ−1

x ◦ f∗ ◦ ϕy

Z→ π1(S1, x)→ π1(S1, y)→ Z

est un morphisme de groupes de Z dans Z. C’est donc la multiplication par un entier,
qui ne dépend pas de x d’après ce qui précède. On le note deg(f) et on l’appelle
degré de l’application f .

(c) Calculer le degré d’une rotation et de l’application z 7→ zn.

(d) Montrer que deg(f ◦g) =deg(f)deg(g). En déduire que si f est un homéomorphisme
alors deg(f) = ±1.

(e) Montrer que deg(f)=deg(g) si et seulement si f et g sont homotopes. En déduire
que deg(f) = 0 si et seulement si f se prolonge continûment en une application
f ′ : B2 → S1.

(f) Montrer qu’il n’existe pas de rétraction de B2 dans S1.

(g) En déduire le théorème fondamental de l’algèbre : tout polynôme complexe non
constant admet au moins une racine.
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Exercice 2.6 Théorème du relèvement
Soit p : X → B un revêtement, Y une variété connexe et f : Y → B une application

continue. Soit y ∈ Y , b = f(y) et x ∈ p−1(b). Montrer qu’il existe une application
f̄ : Y → X (nécessairement unique) telle que p ◦ f̄ = f si et seulement si

f∗(π1(Y, y)) ⊂ p∗(π1(X,x))

En déduire qu’un revêtement simplement connexe est universel.

Exercice 2.7 (Classification des revêtements du cercle)
Trouver tous les revêtements à isomorphisme près d’espace totaux connexes et de

base le cercle S1. Pourquoi sont-ils tous galoisiens ?

Exercice 2.8 (Revêtements de bouquets)

(a) Trouver tous les revêtements d’espaces totaux connexes et à 2 feuillets du bouquet
de k cercles. Lesquels sont galoisiens ?

(b) Trouver tous les revêtements d’espace totaux connexes à 3 feuillets du bouquet de
deux cercles. Lesquels sont galoisiens ?

(c) Construire un revêtement universel du bouquet de deux cercles.

Remarque Le bouquet de plus deux cercles n’est pas une variété...mais ça n’est pas
bien grave.

Corrigés des exercices (ou référence)

Exercice 2.1

Exercice 2.2

Exercice 2.3

Exercice 2.4

Exercice 2.5

Exercice 2.6

Exercice 2.7

Exercice 2.8



Chapter 3

Variétés hyperboliques

3.1 Qu’est-ce qu’une variété hyperbolique

3.1.1 Introduction

Une variété est un espace topologique localement homéomorphe à Rn satisfaisant à la
condition (de recollement) suivante

Figure 3.1: Une variété hyperbolique

Une variété hyperbolique est un raffinement de la notion de variété : les ouverts
ϕ(U1) et ϕ(U2) sont maintenant des ouverts de Hn (ce qui n’est pas une restriction
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mais plutôt une convenance psychologique) et les changements de cartes sont données
par des isométries de Hn. Une variété hyperbolique est donc un collage lisse de petits
morceaux de l’espace hyperbolique. C’est en fait un cas particulier de ce qu’on appelle
une (G,X)-structure

3.1.2 (G,X)-structure ou structure géométrique

Dans les années 1870, F. Klein propose une vision différente de la géométrie, très attachée
à la notion de groupe. pour Klein, une géométrie est l’ensemble des invariants sous
l’action d’un groupe de transformations donné. Son programme de recherche visant à
clarifier cette notion est connu sous le nom de programme d’Erlangen.

Par exemple, si on pense à la sphère S2 comme l’espace homogène O3(R)/O2(R), on
fait de la géométrie sphérique, tandis que si on pense à S2 comme PO(3, 1)/Stab(ξ) où
ξ est un point à l’infini de l’espace hyperbolique, alors on fait de la géométrie conforme.
Ou encore si Rn − {0} =GLn(R)/

(
GLn−1(R) nRn−1

)
, c’est le lieu de l’algèbre linéaire

mais si Rn =On(R) nRn/On(R), c’est plutôt le lieu de la géométrie euclidienne.
Le but de cette section est de définir proprement cette notion. Soit alors X une

variété connexe et G un sous-groupe du groupe des difféomorphismes de X. Dans toute
la suite, on fait l’hypothèse que le groupe G n’est pas trop gros, au sens suivant :

Définition 3.1.1. On dit que G agit analytiquement sur X si pour tout couple g1, g2 de
G et tout ouvert U de X, si g2|U = g2|U , alors g1 = g2.

On construira plus tard un objet par prolongement analytique et cette hypothèse
sera nécessaire.

On suppose donc dorénavant que G agit analytiquement et transitivement sur X.

Définition 3.1.2 ((G,X)-structure ou structure géométrique). Soit V une variété dif-
férentiable. Une (G,X)-structure sur V est la donnée d’un atlas de cartes ϕi : Vi → X
tel que

• Les Vi sont ouverts et recouvrent V .

• Les ϕi sont des difféomorphismes sur leurs images.

• Tout changement de cartes fij : ϕj◦ϕ−1
i : ϕi(Vi∩Vj)→ ϕj(Vi∩Vj) est la restriction

de l’action de G

On dit aussi que V est une (G,X)-variété.

Exemple

Structure Espace Groupe

Euclidienne Rn On(R) nRn
Sphrique Sn On+1(R)

Hyperbolique Hn PO(n, 1)

Affine Rn GLn(R) nRn

Définition 3.1.3. Soit V et V ′ deux (G,X)-variétés. Un (G,X)-morphisme f : V → V ′

est un difféomorphisme local qui est donné via les cartes par des restrictions d’éléments
de G

Précisément, pour tout point x ∈ V , il existe un ouvert U1 contenant x, un ouvert
U2 contenant f(x) et des difféomorphismes sur leurs images ψ : U2 → X et ϕ : U1 → X
tels que

ψ ◦ f ◦ ϕ−1

est la restriction d’un élément de G à ϕ(U1).
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Figure 3.2: Morpshime de (G,X)-structure

3.1.3 Développante et holonomie

Soit V une (G,X)-variété. Nous allons construire une application D : Ṽ → X qui est
un morphisme de (G,X)-structure et qui aidera à comprendre la structure de V . Cette
application est par construction un difféomorphisme local mais son comportement global
peut être très compliqué.

Proposition 3.1.4. Il existe un (G,X)-morphisme D : Ṽ → X. Tout autre (G,X)-
morphisme est de la forme g ◦D où g ∈ G.

Preuve: On utilise les deux idées suivantes :

1. Localement Ṽ ressemble à V et on peut construire D avec une carte.

2. On utilise ensuite l’hypothèse d’analyticité et une sorte de prolongement analy-
tique.

Existence
Soit v0 ∈ Ṽ . On choisit une carte de la (G,X)-structure, ϕ0 : V0 → X autour de v0

(voir exercice ref ). L’application recherchée coïncidera avec ϕ0 sur V0 et on cherche à
la prolonger. Pour cela, on note qu’il existe une suite de cartes ϕi : Vi → X telle que⋃

i∈N
Vi = Ṽ et Vi ∩ Vi+1 6= ∅.

Par définition de (G,X)-structure, il existe, pour chaque i, un élément gi ∈ G tel que

ϕi−1 = gi ◦ ϕi

sur l’intersection Vi−1 ∩ Vi (le changement de cartes est donné par gi). Pour v ∈ Vi, on
pose

D(v) = g1 ◦ g2 · · · gi(ϕi(v)).

Cette application est bien définie. En effet, si v ∈ Vi ∩ Vi′ (disons i < i′), alors

gi+1 · · · gi′(ϕi′(v)) = ϕi(v)

par définition des gi.

Unicité
On montre en fait le lemme
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Lemme 3.1.5. Soit W une (G,X)-variété connexe. Deux (G,X)-morphismes ϕ, ϕ′ à
valeurs dans X qui coïncident sur un ouvert non vide, coïncident en fait sur tout W .

Preuve: Soit

A =
{
w ∈W tel que ϕ = ϕ′ dans un voisinage de W

}
Par construction A est ouvert et par hypothèse, A est non vide. On veut montrer que A
est aussi fermé. Soit donc w un point de l’adhérence de A. Dans une carte ψ : U → X
autour de w, ϕ et ϕ′ sont représentés par des éléments g et g′ de G

Mais g et g′ coïncident sur ψ(U ∩A) qui est non vide car w est adhérent à A. Donc
g = g′ (hypothèse d’analyticité). Ainsi ϕ et ϕ′ coïncident au voisinage de w.

Une conséquence directe de ce lemme est que siD etD′ sont deux (G,X)-morphismes,
alors, au voisinage de v0, D′ = g ◦ D pour un certain g ∈ G, d’où l’on conclut que
D′ = g ◦D partout sur Ṽ .

Notons Γ = π1(V ). Ce groupe agit sur Ṽ ("action du groupe fondamental de la base
sur la fibre").

Corollaire 3.1.6. Il existe un morphisme de groupes h : Γ→ G tel que, pour tout γ ∈ Γ,

D ◦ γ = h(γ) ◦D.

Preuve: D et D ◦ γ sont deux (G,X)-morphismes : ils diffèrent d’un élément de
h(γ) ∈ G. On vérifie facilement que h est un morphisme de groupes.

Définition 3.1.7. On dit que h est le morphisme d’holonomie de (G,X)-structure.

Par analogie, on appelle parfois l’action de π1(V ) sur Ṽ .

3.1.4 Complétude

On suppose dans cette section que X est simplement connexe. Les exemples importants
de (G,X)-structure s sont celles qui sont revêtues par X.

Lemme 3.1.8. Soit Γ un groupe agissant librement et discontinûment sur X de sorte que
Γ est en fait un sous-groupe de G. Alors Γ\X est aussi munie d’une (G,X)-structure.

Preuve: On sait déjà que π : X → Γ\X est un revêtement (c’est même le revêtement
universel). Mais une petite difficulté survient : en choisissant un ouvert trivialisant dans
Γ\X, qui est donc difféomorphe à un ouvert de X, on ne construit pas tout de suite une
carte de (G,X)-variété. Rappelons en effet que les ouverts trivialisants sont les ouverts
π(Vx) où, pour chaque point x, Vx est construit de sorte que, pour tout γ ∈ Γ\ {e},

γ(Vx) ∩ Vx = ∅.

Prenons donc deux ouverts trivialisants qui s’intersectent, disons π(Vx) ∩ π(Vy) 6= ∅. Il
se peut qu’il existe γ ∈ Γ tel que Vy intersecte à la fois Vx et γ(Vx) (il peut même exister
plusieurs tels γ).

Or, parmi toutes les intersections γ(Vx) ∩ Vy, il y en a une qui est difféomorphe à
π(Vx) ∩ π(Vy). Le changement de carte est alors donné par γ−1.

Définition 3.1.9. On dit qu’une (G,X)-structure sur V est complète si la développante
D : Ṽ → X est un homéomorphisme (auquel cas V est le quotient de X par une action
libre et discrète de son groupe fondamental).
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Lorsque l’on écrit V = Γ\X, on dit parfois que l’on a uniformisé la (G,X)-structure.
La fin de ce paragraphe est hors-programme parce qu’elle utilise des notions de

géométrie riemannienne (voir cependant l’exercice ref et aussi Ratcliffe pour le cas général
).

Le premier théorème peut s’énoncer de manière à cacher la présence de la géométrie
riemannienne. C’est cette version qui est détaillée en exercice.

Théorème 3.1.10. Toute (Isom(Hn),Hn)-structure sur une variété compacte est com-
plète.

Mais on peut faire un peu mieux.

Définition 3.1.11 ((G,X)-structure métrique). Une (G,X) variété métrique G est une
(G,X)-variété où X est une variété riemannienne et G est un sous-groupe du groupe des
isométries de X

Une (G,X)-variété métrique est naturellement munie d’une métrique riemannienne
si on impose que les cartes soient des isométries et cette condition détermine une unique
métrique.

On suppose donc que X est une variété riemannienne (toujours simplement connexe)
et que G est un sous-groupe du groupe des isométries de X. C’est bien sûr le cas de
l’espace hyperbolique X = Hn avec le groupe G = Isom(Hn). La version la plus générale
d’uniformisation est la suivante.

Théorème 3.1.12. Soit V une (G,X)-variété métrique. Les deux conditions suivantes
sont équivalentes :

1. V est complet en tant qu’espace métrique.

2. V est complète comme (G,X)-structure.

3.2 Groupes kleiniens

Définition 3.2.1. Un sous-groupe kleinien est un sous-groupe discret de Isom+(Hn) (en
dimension 2, on dit aussi un groupe fuchsien).

Le fait de s’intéresser à des groupes kleiniens a été justifié au paragraphe précédent :
considérer l’espace des orbites d’un groupe kleinien (qui agit proprement discontinûment)
est en effet l’unique moyen de construire des variétés hyperboliques complètes. Le but
de ce paragraphe est de montrer que le caractère discret du groupe se lit sur son action
sur Hn et inversement. En particulier, nous prouvons que l’action d’un groupe discret
sans éléments elliptiques donne une situation de revêtement Hn → Γ\Hn.

Remarque Un groupe Γ est discret si et seulement si

(Tn ∈ Γ, Tn → Id)⇔ Tn = Id pour n assez grand.

En effet grâce à la structure de groupe, on peut tout "ramener à Id".

On rappelle que pour un groupe discret Γ, il agit proprement si toute Γ-orbite est
localement finie i.e, pour tout compact K ⊂ Hn, {g ∈ Γ, gK ∩K 6= ∅} est fini. Nous
allons montrer dans un premier temps que, pour un groupe discret d’isométries de Hn,
la discrétude implique déjà que Γ agisse proprement. En revanche, nous ne ferons pas
systématiquement l’hypothèse que le groupe agit librement (par exemple Γ peut contenir
des éléments elliptiques, auquel cas Γ\Hn n’est pas une variété (et Hn → Γ\Hn est un
revêtement ramifié, mais nous n’entrerons pas dans les détails).

Pour ne pas avoir à répéter l’hypothèse que le groupe est discret, on utilise la défini-
tion suivante
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Définition 3.2.2. On dit que Γ agit proprement discontinûment si toute Γ-orbite est
localement finie.

Ainsi si Γ est discret et qu’il agit proprement, alors il agit proprement discontinûment.
On montrera que la réciproque est aussi vraie.

Remarque De manière évidente, Γ agit proprement discontinûment si et seulement si
chaque orbite est discrète et si chaque stabilisateur est fini.

Nous montrerons que la discrétude de toutes les orbites implique la discrétude du
groupe.

Commençons par analyser la topologie de Isom(Hn). On dispose a priori de deux
topologies sur Isom(Hn) :

1. La topologie de PO(n, 1) comme (quotient de) groupes de matrices.

2. La topologie de la convergence uniforme sur les compacts donnée par l’action sur
Hn (topologie compacte-ouverte).

Théorème 3.2.3. Ces deux topologies coïncident.

Preuve:

Lemme 3.2.4. Une suite d’isométries (φi) d’un espace métrique X converge uniformé-
ment sur les compacts vers une isométrie φ si et seulement si elle converge simplement.

Preuve: La condition est évidemment nécessaire puisqu’un point est compact.
Inversement, soit K un compact et ε > 0. On suppose que (φi)i ne converge pas

uniformément sur K : il existe donc une suite croissante d’indice (ij)j et une suite de
points (xj)j de K tel que

d(φij (xj), φ(xj)) > ε.

Quitte à extraire encore dans la suite (xj), on peut supposer que (xj) converge vers
x ∈ K. On choisit alors j tel que d(xj , x) < ε/4 et d(φij (x), φ(x)) < ε/2 (grâce à la
convergence simple au point x). Il suit que

d(φij (xj), φ(xj)) 6 d(φij (xj), φij (x)) + d(φij (x), φ(x)) + d(φ(x), φ(xj)) < ε.

Revenons au théorème

• Supposons que Ai → A dans PO(n, 1). Alors, pour tout x, Aix → Ax (action
linéaire). Ainsi Ai → A pour la topologie compacte-ouverte d’après le lemme.

• Inversement, on suppose que Ai → A uniformément sur les compacts de Hn. Alors
Aien+1 → Aen+1. Puis, en posant vj = ej +

√
2en+1 ∈ Hn, alors

Aivj = Aiej +
√

2Aien+1 → Avj = Aej +
√

2en+1.

Donc Aiej → Aej , ce qui suffit à montrer la convergence dans PO(n, 1).

Théorème 3.2.5. Le groupe Γ est discret si et seulement si Γ agit proprement discon-
tinûment sur Hn.

Preuve:
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Lemme 3.2.6. Les applications d’évaluation

fa : Isom(Hn) −→ Hn

γ 7−→ γa

sont propres.

Preuve: Dans le modèle de la boule, on rappelle qu’il existe des translations hyper-
boliques τa envoyant 0 sur a. Avec ces translations, on forme un homéomorphisme

f : On(R)×Hn −→ Isom(Hn

(A, a) 7−→ τaA

faut-il en dire plus ? . Soit K un compact de Hn. L’ensemble {γ ∈ Isom(Hn), γa ∈ K}
s’identifie via l’homéomorphisme ci-dessus à On(R)×K qui est donc compact.

Lemme 3.2.7. Soit Γ un sous-groupe agissant proprement discontinûment sur Hn et
soit p ∈ Hn un point fixé par un certain élément γ 6=id, γ ∈ Γ. Il existe un voisinage de
p dans lequel tous les autres points (différents de p) ne sont fixés par aucun élément de
Γ (différent de l’identité). En particulier, il existe des points de Hn qui ne sont fixés par
aucun élément du groupe.

Preuve: Supposons que γp = p pour γ 6=id et qu’il existe pn → p et γn ∈ Γ tels que
γnpn = pn. La boule fermée B̄3ε(p) est compacte donc

{
γ ∈ Γ, γp ∈ B̄3ε(p)

}
est fini.

Ainsi, pour n suffisamment grand, d(γnp, p) > 3ε et d(pn, p) < ε. Puis, par l’inégalité
triangulaire,

d(γnp, p) 6 d(γnp, γnpn) + d(γnpn, p) = d(pn, p) + d(pn, p) < 2ε.

Revenons au théorème

1. Supposons que Γ soit discret et soit K un compact de Hn, z ∈ Hn. L’ensemble
{γ ∈ Γ, γz ∈ K} est un compact de Γ donc est fini.

2. Inversement, supposons que Γ agisse proprement discontinûment mais ne soit pas
discret. On choisit un point s ∈ Hn fixé par aucun élément du groupe. Puisque Γ
n’est pas discret, il existe des élément distincts γk, γk →id. Donc γks→ s. Puisque
s n’est fixé par personne, les γks sont tous différents. Toute boule fermée centrée
en s contient donc une infinité d’élément de l’orbite.

Corollaire 3.2.8. Le groupe Γ agit proprement discontinûment si et seulement si, pour
tout z ∈ Hn, l’orbite Γz est discrète dans Hn.

Preuve: Si Γ agit proprement discontinûment, chaque orbite est localement finie donc
discrète. Inversement, si Γ n’agit pas proprement discontinûment, alors Γ n’est pas
discret par le théorème précédent. On a construit au cours de la preuve une orbite non
discrète.

3.3 Groupes élémentaires

Dans cette section, on se place en dimension 3.
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3.3.1 Préliminaire sur les points fixes

Pour un élément γ ∈PSL2(C), γ 6=id, on note Fγ =
{
z ∈ Ĉ, γz = z

}
.

Remarque Le cardinal de Fγ est 1 ou 2. Si γ est parabolique ou hyperbolique, alors
Fγ =

{
z ∈ H3 ∪ Ĉ, γz = z

}
. Si γ est elliptique, alors Fγ = {α, β} (une transformation

de SO3(R) est une rotation autour d’un axe) et la géodésique (αβ) est fixe points par
points.

Proposition 3.3.1. 1. Les isométries γ et γ′ ont un point fixe en commun si et
seulement si trace [γ, γ′] = 2.

2. On suppose que trace [γ, γ′] = 2 et γ 6=id, γ′ 6=id. Alors

(a) Soit [γ, γ′] = 1 (i.e γγ′ = γ′γ) et Fγ = Fγ′.
(b) Soit [γ, γ′] est parabolique et Fγ 6= Fγ′

Remarque Le commutateur [γ, γ′] est indépendant du choix des représentants dans
SL2(R) : la trace est donc bien définie.

Preuve: 1. On peut supposer que γ =

(
a b
0 d

)
avec ad = 1. Posons γ′ =

(
a′ b′

c′ d′

)
avec a′d′ − b′c′ = 1. Le calcul donne

trace
[
γ, γ′

]
= 2 + b2c′2 + bc′(a− d)(a′ − d′)− b′c′(a− d)2.

Si Fγ ∩ Fγ′ 6= ∅, on peut supposer que γ∞ = γ′∞ = ∞ et alors c′ = 0 puis donc
trace [γ, γ′] = 2.

Inversement, supposons trace [γ, γ′] = 2.

• Si γ est parabolique, on peut supposer, γ(z) = z + 1 (i.e a = d = b = 1). De
trace [γ, γ′] = 2, on tire c′ = 0.
• Si γ n’est pas parabolique, on peut supposer que γ(z) = k2z (voir l’exercice

sur les classes de conjugaison ) qui regroupe le cas hyperbolique et elliptique
(a = k, b = c = 0, d = 1/k). Ainsi γ(0) = 0 et γ(∞) =∞. Donc

2 = trace
[
γ, γ′

]
= 2− b′c′(a− d)2 donne b′c′ = 0

Ainsi, soit c′ = 0 et γ′∞ =∞, soit b′ = 0 et γ′(0) = 0.

2. On suppose γ∞ = γ′∞ =∞ donc

γ =

(
a b
0 1/a

)
et γ =

(
a′ b′

0 1/a′

)
Un calcul facile donne [γ, γ′] = 1 si et seulement si b

′

a

(
1− a2

)
= b

a′

(
1− a′2

)
. Puis,

on déduit

• Si a = 1, alors b 6= 0 car γ 6=id; on obtient a′ = 1. Dans ce cas Fγ = Fγ′ =
{∞}.

• Si a 6= 1, alors Fγ =
{
∞, b

1/a−a

}
. L’équation donne b

1/a−a = b′

1/a′−a′ .

Proposition 3.3.2. Soit γ, γ′ ∈PSL2(C) deux isométries de H3 différentes de id. Les
propriétés suivantes sont équivalentes
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1. γγ′ = γ′γ.

2. γ′(Fγ) = Fγ et γ(Fγ′) = Fγ′ .

3. (a) Soit Fγ = Fγ′

(b) Soit Fγ ∩ Fγ′ = ∅ et alors γ2 = γ′2 =
(
γγ′2

)2
= 1 et γ et γ′ ont un point fixe

en commun dans H3.

Preuve: 1. Si γ et γ′ commutent, les espaces propres de l’un sont stables par l’autre
(on rappelle que l’action des isométries sur Ĉ est l’action projective. Ceci montre
que 1. implique 2. .

2. Pour montrer que 2. implique 3. , on suppose 2. et Fγ 6= Fγ′ . Il existe donc
α ∈ Ĉ tel que γ(α) = α et γ′(α) 6= α. Or γ′(α) ∈ Fγ donc Fγ = {α, β} où
β = γ′(α) 6= α. Maintenant γ′(β) ∈ Fγ : si γ′(β) = β, on aurait γ′(α) = α; c’est
donc que γ′(β) = α On obtient bien que Fγ ∩Fγ′ = ∅ (ni α, ni β n’est fixé par γ′).
De plus, γ′2 fixe α, β et Fγ′ et on déduit que γ′2 = 1 (il a trop de points fixes).

De même γγ′(α) = β et γγ′(β) = α donc, Fγγ′ ∩ Fγ = ∅, puis (γγ′)2 = 1.

Ou encore, en échangeant le rôle de γ et γ′, on montre que γ2 = 1.

Quitte à conjuguer, γ(z) = kz car γ n’est pas parabolique. Donc γ = −id. Du
coup γ′(z) = k′

z puisque γ′ échange les points fixes de γ. L’action dans H3 = U3

est
γ(z + tj) = −z + tj et γ′(z + tj) =

k′z + |k′| tj
|z|2 + t2

.

On vérifie que
√
|k′|j est fixe par γ et γ′.

3. Supposons enfin 3. . Si Fγ = Fγ′ , par la proposition précédente, on a 1. . Si
Fγ 6= Fγ′ , le groupe engendré par γ et γ′ est d’exposant 2 donc commutatif.

3.3.2 Sous-groupes élémentaires de PSL2(C)

Les sous-groupes élémentaires sont les sous-groupes du groupe d’isométrie de H3 sont les
groupes qui ont une dynamique pauvre, au sens suivant.

Définition 3.3.3. Un sous-groupe de PSL2(C) est élémentaire s’il admet une orbite finie
dans H3 ∪ Ĉ.

Nous avons déjà remarqué que les isométries qui ont une dynamique intéressante sont
les isométrie parabolique et hyperbolique. Cette remarque naïve peut être soutenue par
l’énoncé suivant.

Théorème 3.3.4. Soit G un sous-groupe de PSL2(C) qui ne contient que des elliptiques
(et 1). Alors il existe un point fixe x ∈ H3 commun à tous les éléments de G. En
particulier, G est élémentaire.

Corollaire 3.3.5. Si G est fini, alors G a un point fixe dans H3.

Pour attaquer la preuve de ce théorème, nous aurons besoin de deux lemmes sur
les points fixes des groupes qui ne contiennent que des elliptiques. On rappelle qu’une
isométrie elliptique γ a deux points fixes α et β au bord de H3, que la géodésique (αβ)
est fixe point par point. On note cette géodésique Aγ et on l’appelle l’axe de γ.

Lemme 1. Soit γ, γ′ des elliptiques tels que γγ′ est aussi elliptique.
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• Les points fixes de γ et γ′ sont cocycliques.

• Si de plus [γ, γ′] est elliptique ou 1, alors les axes de γ et γ′ se coupent dans H3.

Lemme 2. Soit γ et γ′ avec un point fixe commun dans H3 (donc elliptiques). Alors

• Soit tous les éléments de 〈γ, γ′〉 ont le même axe Aγ = Aγ′ .

• Soit il existe γ′′ ∈ 〈γ, γ′〉 tel que Aγ, Aγ′ et Aγ′′ ne sont pas coplanaires.

Voyons déjà comment prouver le théorème.

Preuve du théorème: Si tous les éléments de G ont le même axe, le théorème est
démontré (l’axe est fixe point par point). On peut donc supposer qu’il existe γ et γ′ dans
G et différents de 1 tels que Aγ 6= Aγ′ . On applique le lemme 1 : γγ′ est elliptique, [γ, γ′]
est elliptique ou 1. Ainsi Aγ ∩ Aγ′ 6= ∅ dans H3. En conjuguant G, on peut supposer
que Aγ ∩ Aγ′ = {0} dans B3. Ensuite, avec le lemme 2, il existe γ′′ ∈ 〈γ, γ′〉 tel que
Aγ , Aγ′ et Aγ′′ ne sont pas coplanaires. Toujours d’après le lemme 1, l’axe de γ′′ coupe
les deux autres et le point d’intersection ne peut être que 0, sinon les trois axes seraient
coplanaires. Il s’agit maintenant de montrer que 0 est un point fixe commun à tous les
éléments de G. Soit donc δ ∈ G, δ 6= 1. Par le lemme 1, Aγ et Aδ se coupent dans
B3. Donc Aγ et Aδ sont dans un même plan P . C’est un plan vectoriel car 0 ∈ Aγ . De
même, il existe P ′ contenant 0, Aγ′ et Aδ, et P ′′ contenant 0, Aγ′′ et Aδ.

Ainsi Aδ est contenu dans P ∩ P ′ ∩ P ′′ qui est de dimension 0 (exclu car il contient
Aδ), 1, ou 2 (exclu parce que P = P ′ = P ′′ est absurde car Aγ , Aγ′ et Aγ′′ ne sont pas
coplanaires). Finalement Aδ = P ∩ P ′ ∩ P ′′ et Aδ contient 0 !

Terminons donc avec les deux lemmes restants

Preuve du lemme 1: Si Fγ ∩Fγ′ 6= ∅, alors les points fixes sont cocycliques (il n’y en
a que 3). Si de plus, [γ, γ′] est elliptique ou 1, alors [γ, γ′] = 1 et Fγ = Fγ′ (proposition
3.3.1 des préliminaires). Donc Aγ = Aγ′ .

Si maintenant Fγ ∩Fγ′ = ∅, on peut supposer que γ(z) = kz avec |k| = 1, k 6= 1. On
pose γ′(z) = az+b

cz+d où trace2 γ est réelle et dans [0, 4[. De même, trace2 γγ′ = (ka+ k̄d)2

est réelle et dans [0, 4[. On en déduit qu’il existe u et v dans ]−2, 2[ tels que a + d = u
et ka+ k̄d = v. D’où

a =
k̄u− v
k̄ − k

et d =
ku− v
k − k̄

On en retient que a = d̄, ce qui est utile pour faire le calcul des points fixes de γ′. On
trouve facilement

α,′ β′ =
1

2c

(
(a− d)± i

√
4− trace2 γ′

)
et on constate que α′, β′ ∈ iR.

Rappel. On rappelle qu’on dispose d’un critère (de nature projective) pour décider
si 4 points de Ĉ sont cocycliques, c’est-à-dire en fait si 4 points de la droite projective
complexe sont sur la même droite projective réelle : il suffit de vérifier si le birapport est
réel. On énonce sans preuve les propriétés utiles du birapport.

• Soient donc p1, p2, p3 et p4 des points distincts de Ĉ; le birapport de ces 4 points
est le nombre complexe donné par

[p1 : p2 : p3 : p4] =
p2 − p4

p2 − p1
· p3 − p1

p3 − p4
.
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• Pour tout λ ∈ C, λ 6= 0,

[p1 : p2 : p3 : p4] = [λp1 : λp2 : λp3 : λp4]

(on peut en fait montrer que le birapport est invariant par toute transformation
projective (bijective).

• Il est facile de voir que
[0 : 1 :∞ : z] = z

• Enfin, on montre que p1, p2, p3 et p4 sont cocycliques si et seulement si

[p1 : p2 : p3 : p4] ∈ R.

il suffit de montrer que GL2(C) est trois fois (projectivement) transitif sur Ĉ et de
se ramener au cas précédent où p1 = 0, p2 = 1 et p3 =∞.

Ici, les 4 points fixes sont 0, ∞, α′ et β′ et on a

[
0 :∞ : α′ : β′

]
=

[
0 :∞ : 1 :

β′

α′

]
= −β

′

α′
∈ R

car α′ et β′ sont dans iR.
Enfin, pour voir que les axes se coupent, posons

γ =

(
eiθ 0
0 e−iθ

)
et γ′ =

(
a b
c d

)
avec a = d̄, ad− bc = 1

Le calcul donne
trace2

[
γ, γ′

]
= 4

(
1 + sin2 θ

(
|a|2 − 1

))
.

Pour que [γ, γ′] soit elliptique, il faut nécessairement que |a|2 < 1. Écrivons a = s + it,
donc d = s− it, de sorte que les points fixes sont

α′, β′ =
i

c

(
t±

√
1− s2

)
.

Pour que les points fixes se coupent, il faut que 0 soit à l’intérieur du segment [α′β′] donc
que les signes des parties imaginaires de α′ et β′ soient opposés. Posons encore α′ = λ1

i
c

et β′ = λ2
i
c . On trouve

λ1λ2 =
(
t+

√
1− s2

)(
t−
√

1− s2
)

= t2 + s2 − 1 < 0.

Preuve du lemme 2: On peut supposer que Aγ ∩Aγ′ contient 0 ∈ B3.

1. Si Aγ = Aγ′ , alors, pour tout γ′′ ∈ 〈γ, γ′〉, Aγ′′ = Aγ′ = Aγ (γ et γ′ fixent les
mêmes points donc γ′′ aussi, donc son axe est le même).

2. Si Aγ ∩ Aγ′ = {0}, Aγ et Aγ′ sont dans un même plan P et on distingue encore 3
sous-cas

(a) Si γ(Aγ′) n’est pas inclus dans P , alors γ′′ = γγ′γ−1 convient car Aγ′′ =
γ(Aγ′).

(b) De même si γ′(Aγ) n’est pas inclus dans P .
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Figure 3.3: Les axes se coupent

(c) Sinon γ(Aγ′) ⊂ P et γ′(Aγ) ⊂ P . Ainsi γ(P ) = P et γ′(P ) = P . La
seule possibilité est que γ et γ′ soient des rotations d’angle π autour de leurs
axes. Soit alors A′′ l’orthogonale de P . Alors γ et γ′ échangent A′′(+∞) et
A′′(−∞) donc γ2 = γ′2 = 1 et γ′′ = γγ′ fixe A′′(+∞) et A′′(−∞). Donc γ′′

est elliptique d’axe A′′

Théorème 3.3.6. Tout sous-groupe abélien de PSL2(C) est élémentaire (et même fixe
un point).

Preuve: Si ce groupe ne contient que des elliptiques, c’est bon. Si ce groupe contient
un élément parabolique ou hyperbolique γ, alors, pour tout γ′ ∈ G, γγ′ = γ′γ donc
(proposition 3.3.1) Fγ = Fγ′ . Donc Fγ est fixe par G.

3.3.3 Sous-groupes discrets élémentaires

Théorème 3.3.7. Soit Γ ⊂PSL2(C) un groupe discret et élémentaire.

1. Soit Γ ne contient que des elliptiques et alors Γ est isomorphe à Z/nZ, à Dn, A4,
S4 ou A5.

2. Soit Γ contient un parabolique et alors il ne contient pas d’hyperbolique. Il est
isomorphe à un groupe discret d’isométries du plan euclidien.

3. Soit Γ contient un hyperbolique, Alors il ne contient pas de parabolique.

Preuve: 1. Dans le premier cas, Γ fixe un point : il est conjugué à un sous-groupe
de SO3 qui est compact. Donc Γ est fini. Les sous-groupes finis de SO3 sont les
d’isométries

• directes et indirectes d’un n-gone. On obtient un groupe cyclique Z/nZ ou
diédral Dn.

• directes du cube et de l’octaèdre : S4.
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• directes du tétraèdre : A4.

• directes du dodécaèdre et de l’icosaèdre : A5.

Lemme 3.3.8. Soit γ un hyperbolique de PSL2(C) et soit γ′ tel que Fγ ∩ Fγ′ = {α}.
Alors 〈γ, γ′〉 n’est pas discret.

Preuve: On peut supposer α =∞, γ(z) = kz avec |k| > 1 et γ′(z) = az + b. Alors

γ−nγ′γn(z) = az + k−nb→ az.

conclure

2. Si Γ contient un parabolique γ′, on suppose γ′∞ = ∞. Toutes les autres orbites
de γ′ sont infinies donc, si Γ a une orbite finie, c’est forcément {α}. Puisque Γ fixe
un point, il est conjugué à un groupe de {z 7→ az + b} avec |a| = 1 (Γ ne contient
pas d’hyperbolique). C’est un groupe d’isométries euclidiennes.

3. Découle du point 2.

3.4 Régions fondamentales

On se place à partir de maintenant en dimension 2 bien que la théorie soit semblable en
dimensions supérieures. Nous avons déjà établi une correspondance entre variétés hyper-
boliques et groupes discrets d’isométries de H2 : d’une variété hyperbolique, on obtient
un groupe en considérant le groupe fondamental, et d’un groupe en obtient une variété en
prenant le quotient de H2 par le groupe. Le but de cette section est d’expliquer concrète-
ment comment construire le quotient par un groupe donné et d’analyser la géométrie de
la variété obtenue.

Définition 3.4.1. Un polygone de H2 est une partie convexe fermée dont les bords sont
des morceaux de géodésiques. Un côté du polygone est un segment géodésique maximal
dans le bord. Un sommet est un point du bord à l’intersection de deux côtés.

On ne suppose pas toujours que le polygone est fini. En revanche, on le suppose
localement fini : dans tout ouvert de H2, le polygone peut s’écrire comme réunion fini
de géodésiques.

Soit maintenant Γ un groupe discret agissant sur H2.

Définition 3.4.2. Un polygone est dit fondamental pour l’action de Γ si

1. Les images γ(
o
P ) de l’intérieur de P sont deux à deux disjointes.

2. Les images pavent H2 :
⋃
γ∈Γ γ(P ) = H2.

Ainsi, pour construire la variété quotient Γ\Hn, il suffit de comprendre l’action de Γ
sur une région fondamentale.

Définition 3.4.3. Le domaine de Dirichlet Dp associé à Γ et centré en p ∈ H2 est
l’ensemble

Dp =
{
z ∈ H2 ∀γ ∈ Γ, d(z, p) 6 d(z, γp)

}
.

On constate à l’exercice ref que le domaine de Dirichlet de PSL2(Z) (qui est discret
dans PSL2(R) est un polygone. C’est presque toujours le cas.
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Figure 3.4: Domaine de Dirichlet

Proposition 3.4.4. Soit Γ un groupe fuchsien et p ∈ H2 un point à stabilisateur trivial
(un tel point existe d’après le lemme 3.2.7). Alors Dp est un polygone.

Preuve: L’ensemble Dp est l’intersection des 1/2-plans

Dγ =
{
z ∈ H2, d(z, p) 6 d(z, γp)

}
pour γ ∈ Γ. C’est donc un convexe fermé. Il reste à vérifier la condition de finitude
locale. Soit

ΓR = {γ ∈ Γ, γ 6= id, d(p, γp) 6 2R}

Cet ensemble est fini car Γ est fuchsien et que p n’est fixé par aucun point. Puis Dp ∩
B(p,R) se réécrit comme réunion finie⋂

γ∈ΓR

Dγ ∩B(p,R).

On donnera plus tard des conditions qui garantissent que Dp est fini.

Théorème 3.4.5. Soit Γ un groupe fuchsien. Tout polygone de Dirichlet centré en p (à
stabilisateur trivial) est un polygone fondamental pour Γ agissant sur H2.

Preuve: L’orbite Γ · p est fermée par discrétude Γ. Pour tout z ∈ H2, il existe γ ∈ Γ
tel que d(z,Γp) = d(z, γp) On en conclut que γ−1z ∈ Dp. En effet, pour tout γ′ ∈ Γ,

d(γ−1z, p) 6 d(z, γp) 6 d(z, γ′p)

Donc
d(γ−1z, p) 6 d(z, γγ′p) = d(γ−1z, γ′p).

Ceci montre que
⋃
γDp recouvre H2.

Si maintenant z est dans l’intersection γDp ∩ γ′Dp avec γ 6= γ′. Alors la distance
de z à Γp est atteinte en deux points différents (z ∈ γDp signifie que d(z,Γp) =
d(z, γp)). Autrement dit, le point γ−1z est équidistant de p et de γ−1γ′(p). Donc
γ−1z ∈ {t, d(t, p) = d(t, αp)} pour un certain α ∈ Γ. Donc γ−1z est sur le bord de Dp

et les intérieurs sont disjoints.
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3.4.1 Pavage et présentation

On montre dans ce paragraphe qu’un domaine de Dirichlet pour l’action de Γ en donne
une présentation. Ainsi la correspondance { groupes discrets } ↔ { variétés hyperboliques }
s’enrichit et on dispose maintenant de plus d’informations sur le groupe.

Lemme 3.4.6. Soit z ∈ ∂Dp. Alors il existe γ 6=id tel que γz ∈ ∂Dp. Cet élément γ est
unique si z n’est pas un sommet.

Preuve: On sait que z ∈ ∂Dp si et seulement si d(z,Γ · p) est atteinte à la fois en p
et en γp. Ainsi la distance de γ−1z à l’orbite est atteinte en p et γ−1p. Donc γ−1z est
aussi sur le bord du domaine. Réciproquement, si z et γ−1z sont dans ∂Dp, alors z est
équidistant de p et γp. Si z n’est pas un sommet, cela prouve l’unicité.

Figure 3.5: Un sommet est équidistant de p, γ1p et γ2p

Le lemme précédent ne précise pas que l’on doive avoir γz 6= z. L’égalité peut
avoir lieu pour les sommets mais aussi en certains milieux de segments géodésiques (par
exemple pour z = i dans D2i de PSL2(Z))

Par convention, on rajoute ces points aux sommets, de sorte que, pour z ∈ ∂Dp et
pour γ ∈ Γ, l’égalité γz = z ne peut avoir lieu que si z est un sommet. Autrement dit,
si z ∈ ∂Dp n’est pas un sommet, alors γz est dans un autre côté de ∂Dp.

On note c1, · · · , cn les côtés de ∂Dp. L’action du groupe va nous donner une infor-
mation combinatoire que l’on exprime avec les ci. Pour chaque i, il existe en effet γi ∈ Γ
et un unique j tel que γici = cj . Si le nombre de côtés de Dp est fini, on en déduit déjà
qu’il est pair. Par unicité, on a aussi, γj = γ−1

i . On note σ l’involution i 7→ j.
La donnée de σ et des γi s’appelle un appariement de faces pour Dp. Le domaine

fondamental Dp étant toujours fixé, on obtient la proposition suivante

Proposition 3.4.7. On suppose P fini. Alors Γ est engendré par les γi.

Noter bien qu’un changement de domaine fondamental peut donner un système de
générateurs différents.

Preuve: Soit γ ∈ Γ. Considérons un chemin α de p à γp qui évite les sommets de
toutes les images de Dp et qui est transverse aux côtés. On note c1, · · · , cN la suite (finie
par compacité de α) des côtés des translatés de Dp que l’on croise le long du chemin.
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Figure 3.6: La suite des domaine fondamentaux translatés

Chacun est l’image d’un unique cik de Dp. Le domaine fondamental voisin de Dp accolé
le long de cik est par construction γ−1

ik
(Dp)

La suite des translatés traversés est donc γ−1
i1

(Dp), puis γ−1
i1
γ−1
i2

(Dp), etc jusqu’à
γ(Dp) = γ−1

i1
γ−1
i2
· · · γ−1

iN
(Dp). En particulier, γp = γ−1

i1
γ−1
i2
· · · γ−1

iN
p et, comme p n’est

fixé par aucun élément, γ s’écrit comme produit de γi.

On voudrait maintenant trouver les relations dans le groupe. Elles sont associés aux
sommets du polygone. On dispose en effet d’une relation d’équivalence sur les sommets

s ∼ s′ si et seulement s’il existe γ ∈ Γ tel que γs = s′.

Définition 3.4.8. • Un cycle elliptique est une classe d’équivalence pour la relation
∼.

• L’angle d’un cycle est la somme des angles internes à Dp en chaque sommet du
cycle.

On peut décrire ces cycles de manière combinatoire. Notons si = ci ∩ ci+1 et σ̃(i) =
σ(i)− 1. Le cycle associé à si est{

si, sσ̃(i), sσ̃2(i), · · · , sσ̃l(i)
}

où sσ̃l+1(i) = i (le plus petit l).

Proposition 3.4.9. L’angle d’un cycle est de la forme 2π
q où q ∈ Z. Dans ce cas,

γσ̃l(i) ◦ · · · ◦ γi engendre le stabilisateur de si et est d’ordre q. En particulier, si le groupe
ne contient pas d’elliptiques, tous les angles de cycles sont 2π.

Preuve: Par construction, γσ̃l(i) ◦ · · · ◦γi stabilise si donc est d’ordre fini car le groupe
est discret. Or c’est la rotation d’angle l’angle du cycle. Pour s’en convaincre, on
rassemble autour de si tous les translatés correspondants aux γσ̃r(i) et on suit le trajet
d’un point sur le segment ci+1 (voir figure 3.7).

je ne comprends pas pourquoi l’élément engendre

On montre enfin une réciproque de la construction précédente : lorsque l’on se donne
un polygone avec appariements de faces tels que les cycles soient d’angles divisant 2′, ces
appariements engendrent un groupe fuchsien.

Théorème 3.4.10 (de Poincaré). Soit D un polygone compact de côtés c1, · · · , c2n avec
un appariement de faces (σ, (γi)16i62n) tel que l’angle de chaque cycle divise 2π. Alors
le groupe engendré par les γi est fuchsien, de présentation〈
γi | γσ(i) = γ−1

i et
(
γσ̃l(i) ◦ · · · ◦ γi

)q
= 1 pour chaque sommet si où l’angle du cycle est

2π

q

〉
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Figure 3.7: Le stabilisateur de si

Preuve: On considère le groupe abstrait G de présentation〈
ai | aσ(i) = a−1

i et
(
aσ̃l(i) ◦ · · · ◦ ai

)q
= 1 pour chaque sommet si où l’angle du cycle est

2π

q

〉
On veut montrer que Γ est une représentation de G et queD est un polygone fondamental
pour Γ (ce qui implique la discrétude). pour cela, on construit un espace combinatoire de
pavage. En effet, soit H = D ×G sur lequel on met la relation d’équivalence engendrée
par (p, g) ∼ (p′, g′) si et seulement s’il existe i tel que p = γip

′ et g′ = ga−1
i . On note

H∗ = H/ ∼. On munit H∗ de la topologie quotient. Une base d’ouverts est donné par

1. Les boules contenues dans l’intérieur d’une copie D × {g} de D.

Figure 3.8: Premier type d’ouverts de H∗

2. L’union des deux demi-boules de mêmes rayons, l’une dans D× {g} centrée en un
point (p, g), p étant dans le bord de D mais sans être un sommet; et l’autre dans
D ×

{
ga−1

i

}
centrée en (γip, ga

−1
i ).
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Figure 3.9: Deuxième type d’ouverts de H∗

3. L’union de toutes les boules de mêmes rayons centrées en les(
sσ̃k(i), g

[(
aσ̃k(i) · · · ai

)(
aσ̃l(i) · · · ai

)m]−1
)

pour 0 6 k 6 l et 0 6 m 6 q.

Figure 3.10: Troisième type d’ouverts de H∗

Cette topologie rend H∗ connexe. En effet, soit g ∈ G. On note l(g) sa longueur
minimale comme mot en les ai. Notons

H∗n = D × {g ∈ G | l(g) 6 n} .

On raisonne par récurrence sur n. H∗1 est homéomorphe à D donc est connexe. On
suppose que H∗n est connexe. Prenons g ∈ G de longueur n + 1 que l’on écrit g = g′ai
où l(g′) = n. Si p ∈ ci, alors (p, g) ∼ (γip, g

′) donc la projection du connexe D × {g}
dans H∗n+1 intersecte le connexe H∗n. Ils sont donc dans la même composante connexe.
Et ceci est vrai pour tout élément de longueur n+ 1.

D’autre part G agit sur H par g · (p, g′) = (p, gg′) et cette action passe au quotient
sur H∗. D’après la proposition précédente, les relations de G sont vérifiées par Γ (on n’a
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pas utilisé le fait que D est un polygone de Dirichlet pour montrer cela). On a donc un
morphisme de groupes

r : G −→ Γ
ai 7−→ γi

et on peut définir une application

j : H −→ H2

(p, g) 7−→ r(g)p

Alors j descend en une application j∗ de H∗ dans H2. En effet, soit (p, g) et (p′, g′) deux
points équivalents : il existe i tel que p′ = γip et g′ = ga−1

i . Alors

j(p′, g′) = r(g′)p′ = r(g)γ−1
i γip = r(g)p = j(p, g).

On vérifie ensuite que j∗ est un homéomorphisme local. Ce n’est pas difficile avec la
liste des ouverts décrits précédemment.

1. Voir figure 3.11

Figure 3.11: Premier type d’ouverts de H∗

2. Voir figure 3.12

3. Voir figure 3.13

On voit facilement que j∗ est propre. Ainsi j∗ est un revêtement ref exo donc un
homéomorphisme puisque H2 est simplement connexe et H∗ connexe.

• Son injectivité montre que ker(r) est trivial donc Γ est isomorphe à G.

• G agissant sur H∗a clairement D × {1} comme domaine fondamental donc D est
un domaine fondamental de Γ agissant sur H2.

3.5 Géométrie des groupes fuchsiens

3.5.1 Groupes géométriquement finis

Nous voulons définir l’aire d’une variété hyperbolique Hn/Γ comme l’aire d’un domaine
fondamental. Cette définition est justifiée par le lemme suivant
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Figure 3.12: Deuxième type d’ouverts de H∗

Définition 3.5.1. Soit Γ un groupe fuchsien agissant sur H2. Si l’aire hyperbolique
d’un domaine fondamental D de Γ est finie, alors tous les domaines fondamentaux sont
d’aires finies et toutes ces aires sont les mêmes.

Preuve: À faire.

Définition 3.5.2. Soit Γ un groupe fuchsien. On dit que

• Γ est un réseau si l’aire hyperbolique de l’espace quotient H2/Γ est finie.

• En particulier, on dit que Γ est un réseau cocompact si H2/Γ est compact

On montrera par la suite que le deuxième point est bien un cas particulier du premier
car Γ admet alors un domaine fondamental compact.

Définition 3.5.3. On dit qu’un groupe fuchsien est géométriquement fini s’il admet un
domaine de Dirichlet avec un nombre fini de côtés.

Théorème 3.5.4 (de Siegel). Un réseau est géométriquement fini.

Preuve: On montre que n’importe quel domaine de Dirichlet Dp est fini. Les sommets
d’un domaine de Dirichlet sont isolés car il est localement fini donc tout compact K de
H2 contient un nombre fini de sommets d’un domaine de Dirichlet. Cela traite déjà le
cas où Dp est compact. Dans le cas général, l’argument est basé sur le lemme suivant.

Lemme 3.5.5. ∑
w

(π − w) 6 µ(Dp) + 2π

où la somme est prise sur tous les sommets de Dp dans H2.
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Figure 3.13: Troisième type d’ouverts de H∗

Preuve: On note ∂D la partie du bord de D dans H2. On remarque que ∂D n’est
pas forcément connexe (si D a des points à l’infini par exemple). On joint p à chaque
sommet ak par une géodésique Ak.

Figure 3.14: Les notations

On obtient une famille de triangles ∆k, d’angles αk, βk et γk. On note aussi ωk l’angle
entre Ak et Ak+1, i.e ωk = βk+γk+1. Lorsque ∂D se disconnecte, on fait les ajustements
de notation évidents (par exemple on note le dernier sommet d’une composante connexe
ak et le premier de la suivante a′k avec γk = γ′k et on identifie ak et a′k)

Pour l’instant on sait que le nombre de sommets est au plus dénombrable. Ainsi,
notons · · · , am, · · · , nn, · · · la suite des sommets (le cas où la suite est borné dans une
direction est similaire et plus simple). D’après le théorème de Gauss-Bonnet (ref ), on a

µ(∆k) = π − αk − βk − γk.
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D’où,
n∑

k=m

αk +
n∑

k=m

µ(∆k) = π − γm − βn +
n−1∑
k=m

(π − ωk) (?)

Le membre de gauche est borné par une constante indépendante de n etm car
∑n

k=m αk 6
2π et

∑n
k=m µ(∆k) 6 µ(D)〈+∞. Puisque les suites γm et βn sont aussi bornées, on en

déduit que
∑n−1

k=m (π − ωk) converge (en tant que suite double), puis donc que γm et
βn convergent (fixer l’une des deux variables puis faire tendre l’autre vers l’infini). No-
tons γ−∞ = limm→−∞ γm et β∞ = limn→∞βn. On veut maintenant montrer que
π − γ−∞ − β∞ > 0. Seul un nombre fini de ak est à distance inférieure à R de p (car
D est localement fini). On en déduit que ak → ∞ et donc que d(p, ak+1)〉d(p, ak) pour
une infinité de valeurs de k. Pour ces indices k, on a γk〉βk (loi du sinus). Et, puisque
βk + γk 6 π, on a β∞ 6 π

2 et de même, γk 6 π
2 . On passe enfin à la limite dans l’égalité

(?) et on obtient
∞∑

k=−∞
αk +

∞∑
k=−∞

µ(∆k) > +

∞∑
k=−∞

(π − ωk)

et le membre de gauche est bien inférieur à 2π + µ(D).

Soit maintenant a un sommet et a1 = a, a2, · · · , an la suite des sommets congruents
(il n’y en a qu’un nombre fini car l’orbite de Γ est discrète; en effet sinon la suite des
angles aux sommets du cycle tend vers 0 car la somme est bornée et on trouve une suite
qui s’accumule en tournant autour de a). On note ωi l’angle en ai. Ainsi, on a

• ω1 + · · ·+ ωn = 2π si a n’est pas fixé par un elliptique ou

• ω1 + · · ·+ ωn = 2π
m si a est fixé par un elliptique d’ordre m.

Dans le premier cas, puisque ωi〈π, on a n > 3 puis

n∑
k=1

(π − ωk) = (n− 2)π〉π.

Cela borne le nombre de cycles elliptiques du premier cas. Dans le second cas,
n∑
k=1

(π − ωk) = (n− 2

m
)π.

Si m > 3, on obtient
∑n

k=1 (π − ωk)〉π3 donc il ne peut y avoir qu’un nombre fini de
cycles dont l’ordre des elliptiques associés est supérieur ou égal à 3. Enfin, chaque point
fixe d’elliptique d’ordre 2 est sur un segment de D et est donc entre deux sommets qui
ne sont pas fixés par des elliptiques d’ordre 2. On conclut que les cycles constitués de
points fixes d’elliptiques d’ordre 2 est aussi fini (d’ailleurs il n’y a qu’un seul sommet par
cycle).

Puisque chaque sommet de D dans H2 appartient à un cycle, la conclusion de tout
ceci est qu’un n’existe qu’un nombre fini de sommets à distance fini de p. Nous allons
terminer la preuve en montrant que le nombre de sommets à l’infini est fini lui-aussi.
Soit donc b1, · · · , bN des sommets à l’infini. Il existe un polygone hyperbolique D′ bordé
par un nombre fini de géodésiques et contenu dans D dont les sommets à l’infini sont
exactement b1, · · · , bN .

En raisonnant comme dans le lemme, on montre que
n∑
k=1

(π − ωk) = 2π + µ(D′)
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Figure 3.15: Un sous-domaine avec des points au bord

Mais pour ces sommets, on a ω = 0. D’où

Nπ = 2π + µ(D′) 6 2π + µ(D).

On conclut que N est fini

3.5.2 Groupes fuchsiens cocompacts

L’objectif de cette section est de montrer que les groupes fuchsiens cocompacts sont
exactement ceux qui ont un (en fait tous) domaine de Dirichlet compact.

Proposition 3.5.6. Si un groupe fuchsien a un domaine de Dirichlet compact, alors il
n’a pas d’élément parabolique.

Preuve: Soit donc D un domaine de Dirichlet compact. On pose

η(z) = inf {d(z, γz) | γ ∈ Γ\ {e} et γ n’est pas elliptique}

Les deux idées à exploiter sont que, d’une part un élément parabolique a des points qui
sont arbitrairement peu déplacés et que d’autre part, puisque les translatés de D pavent
le plan hyperbolique, la situation des points de D est la situation générale.

La fonction η est continue puisque l’orbite est discrète donc fermée. Pour chaque z,
η(z)〉0. Puisque D est compacte, η = inf {η(z), z ∈ D} est atteint et η〉0. Puis, si z
est un point quelconque de H2, soit γ tel que γ(z) = w ∈ D. Soit γ0 non elliptique et
différent de id. Alors

d(z, γ0z) = d(γz, γγ0z) = d(w, γγ0γ
−1w) > η

car γγ0γ
−1 n’est pas elliptique. Donc

inf {d(z, γz) | γ ∈ Γ\ {e} et γ n’est pas elliptique} = η > 0.

Par ailleurs, si Γ contient un parabolique, sa distance de déplacement est 0, donc il existe
des points z qui sont bougés d’une distance inférieure à η.
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Proposition 3.5.7. 1. Si Γ admet une région de Dirichlet non compacte, alors la
variété quotient H2/Γ n’est pas compacte.

2. Si une région de Dirichlet est d’aire finie mais non compacte, elle a un sommet à
l’infini.

Preuve: Soit Dp une région de Dirichlet. On montre dans un premier temps que si Dp

est non compacte, alors elle contient un rayon géodésique infini partant de p. En effet,
pour chaque direction en p, il existe une unique demi géodésique partant de p avec la
vitesse initiale donnée par cette direction.

Cette demi géodésique est soit contenue dansD, soit touche le bord ∂Dp en un unique
point (Dp est convexe). On note l(v) la longueur du morceau de géodésique contenue
dans Dp et partant de p à vitesse v. L’espace des directions est compact (c’est S1) et
l est une fonction continue car le bord de Dp est continu. Ainsi si l(v)〈∞ pour tout
v, alors l est bornée et Dp est compact. Donc, si Dp est non compact, il existe une
demi géodésique de longueur infinie dans Dp. Cette géodésique reste non bornée dans le
quotient Dp/Γ puisque seuls les points du bord sont identifiés. ceci prouve déjà le point
1.

Pour 2., on considère une direction v0 qui engendre une demi géodésique infinie
contenue dans Dp. L’extrémité de cette géodésique est contenue dans ∂H2 ∩ ∂Dp. Mais,
puisque Dp est d’aire hyperbolique finie, ∂H2 ∩ ∂Dp est une réunion de sommets.

Figure 3.16: Une zone du plan hyperbolique d’aire infinie

Corollaire 3.5.8. La variété (ou orbifold) quotient d’un groupe fuchsien est compacte
si et seulement si toute région de Dirichlet est compacte.

À ce stade de notre réflexion, on peut déjà constater qu’il y a une relation entre les
réseaux cocompacts et l’absence d’éléments paraboliques. On veut maintenant montrer
une réciproque et analyser l’action des paraboliques.

Théorème 3.5.9. Soit Γ un groupe fuchsien qui admet une région de Dirichlet Dp(Γ)
d’aire finie. Alors,

1. Chaque sommet à l’infini de Dp est le point fixe d’un parabolique de Γ.

2. Si ξ est un point de ∂H2 fixé par un parabolique de Γ, alors il existe α ∈ Γ tel que
α(ξ) ∈ ∂Dp ∩ ∂H2.

Preuve: Le point 2. est trivial (une région de Dirichlet pave). Soit b un sommet de
Dp à l’infini. On considère les images de Dp, α(Dp) qui ont aussi b pour sommet à
l’infini. il y en a une infinité car l’angle en b est nul. On remarque d’ailleurs que ceci est
cohérent avec la convention des appariements de faces qui dot qu’un sommet à l’infini
à un elliptique associé qui est d’ordre infini, donc un parabolique (autrement dit, une
rotation non triviale d’angle 0 a son point fixe à l’infini).
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Soit b1 = b, b2, · · · , bn les sommets congruents à b (il n’y en a qu’un nombre fini car
Γ est géométriquement fini). On pose bk = γk(b), pour k = 1, · · · , n. Chaque image de
Dp qui a b pour sommet est de la forme γγ−1

k (Dp) où γ fixe b. Il y a donc une infinité de
tels γ. Montrons qu’ils sont tous paraboliques. Raisonnons par l’absurde et supposons
qu’un γ comme auparavant soit hyperbolique.

Figure 3.17: La construction

On considère une géodésique z(t) qui connecte p à b avec z(0) = p et z(∞) = b.
Puisque Dp est une région de Dirichlet (connexe), toute la géodésique z est à l’intérieur
de Dp et d(p, z(t))〈d(γ(p), z(t)) pour tout t. On considère ensuite un horocycle en b
passant par p; on le note ω(b). Puisque γ n’est pas parabolique, γ(p) n’est pas sur
l’horocycle ω(b) (exo ref ). Ainsi γ(p) est soit à l’intérieur de ω(b) soit à l’extérieur
de ω(b) selon si b est attracteur ou répulsif. On suppose que γ(p) est à l’intérieur de
ω(b), quitte à changer γ en γ−1 (l’inverse d’un parabolique est aussi parabolique). Soit
maintenant x la géodésique qui relie γ(p) à b. On note qq le point d’intersection de ω(b)
avec x. On change ensuite l’origine du temps pour x de sorte que x(0) = q. Puis on
montre que d(z(t), x(t)) tend vers 0. En effet, en conjuguant, la situation devient

et on utilise les formules pour la distance :

sinh

(
1

2
d(x(t), z(t))

)
=
|a− c|

2t
→ 0.

Ensuite

t = d(p, z(t))

= d(q, x(t))

= d(q, γ(p)) + d(γ(p), x(t))

si t est grand. Enfin, en utilisant l’inégalité triangulaire pour d(γ(p), z(t)) en transitant
par x(t), on obtient,

d(p, z(t)) > d(q, γ(p)) + d(γ(p), z(t))− d(z(t), x(t)).

En faisant tendre t vers ∞, on obtient

d(p, z(t)) > d(γ(p), z(t)),

ce qui est une contradiction.

Corollaire 3.5.10. Un groupe fuchsien est cocompact si et seulement si c’est un réseau
qui ne contient pas de paraboliques.
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Figure 3.18: Après conjugaison

3.5.3 Signature d’un groupe fuchsien

Soit Γ un réseau. Le quotient H2/Γ est une orbifold donc une surface topologique de
genre g. on note n1, · · · , nr les ordres des elliptiques associés aux cycles. Si un sommet
est à l’infini, on considère qu’il est seul dans son cycle avec m =∞.

Définition 3.5.11. On dit alors que le groupe fuchsien a une signature (g;n1, · · · , nr).

Théorème 3.5.12 (Gauss-Bonnet). Soit Γ un groupe de signature (g;n1, · · · , nr). Alors
le volume de la variété quotient est donné par

µ(H2/Γ) = (2g − 2) +
r∑
i=1

(
1− 1

mi

)
.

Preuve: On en donne qu’une ébauche de preuve (qui peut être complétée avec un peu
de topologie des surfaces). On note n le nombre de paires d’arêtes identifiées dans Dp et
r le nombre de cycles elliptiques.

La surface quotient a r point marqués et n arêtes marquées. On découpe la surface
le long de ces n arêtes. On obtient une face (simplement connexe) qui est le domaine de
Dirichlet. Ainsi la caractéristique d’Euler de la surface est

r − n+ 1 = −(2g − 2)

d’après le cours de topologie des surfaces. On découpe le polygone fondamental en
triangles (dont on peut calculer l’aire en fonction des angles qui eux-mêmes sont liés aux
ordres des elliptiques)1. Ce découpage permet de calculer l’aire de la surface. On trouve

µ(Dp) = (2n− 2)π − 2π

(
r∑
i=1

1

mi

)
= 2π

(
2g − 2 +

r∑
i=1

(
1− 1

mi

))
.

1La preuve du théorème de Gauss-Bonnet riemannien se conduit aussi en respectant ces deux étapes
: une locale où on calcule l’aire des (petits) triangles puis une globales où on somme les informations
locales obtenues
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Figure 3.19: Calcul de la caractéristique d’Euler

La réciproque de ce théorème est donnée par une variante du théorème de Poincaré,
dont la preuve s’adapte facilement

Théorème 3.5.13. Soit g > 0, r > 0 et mi > 1 tous entiers (mi pouvant être infini)
tels que

(2g − 2) +
r∑
i=1

(
1− 1

mi

)
> 0.

Alors il existe un groupe fuchsien cocompact de signature (g;n1, · · · , nr).

Remarque En analysant celle formule, Siegel a montré que le réseau de plus petit
volume est le groupe de triangle (2, 3, 7) (voir exo ), en particulier le réseau de plus
petit volume est cocompact. Ce résultat est faux pour les réseaux de SLn(R) d’après un
résultat de Thilmany du 30/06/20172

3.6 Exercices corrigés pour le chapitre 3

Exercice 3.1 Soit V une (G,X)-variété. Montrer que Ṽ est aussi une (G,X)-
variété.

2la veille de notre dernier cours :-)
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Exercice 3.2 (Le tore est euclidien)
Montrer que le tore Tn est muni d’une (Rn,Rn)-structure (appelée d’ailleurs structure

de translation).

Exercice 3.3 (Structure affine sur un quotient de quadrilatère)
On note A le groupe des similitudes directes du plan euclidien. On considère un

quadrilatère convexe plein non dégénéré P = ABCD. Vérifier qu’il existe une unique
similitude directe γ1 qui envoie le segment orienté AB sur DC et une unique similitude
directe γ2 qui envoie AD sur BC. On note ∼ la relation d’équivalence engendrée par

x ∼ γix si x et γix ∈ P, pour i = 1, 2.

Vérifier que P/ ∼ est muni d’une (A,R2)-structure. On note Γ le groupe engendré par
γ1 et γ2. À quelle condition sur γ1 et γ2 le groupe agit-il librement et discontinûment ?

Exercice 3.4
Facultatif, utilise des notions de géométrie riemannienne.

On suppose que X est munie d’une métrique riemannienne et que G agit par isométries
sur X. On suppose aussi que X est simplement connexe. Soit V une (G,X)-structure
compacte. Le but de cet exercice est de montrer que V est complète.

1. Montrer que V et Ṽ sont munis de métriques riemanniennes de sorte que D : Ṽ →
X est une isométrie locale.

2. Montrer qu’il existe ε tel que, pour tout y ∈ Ṽ , la restriction de D à B(y, ε) est
une isométrie.

3. En déduire que D est un revêtement puis que D est un homéomorphisme.

Exercice 3.5 Quels sont les sous-groupes discrets de R et S1 ?

Exercice 3.6 Soit Γ un sous-groupe cyclique (fini ou non) de PSL2(R). Trouver
des conditions nécessaires et suffisantes pour que Γ soit fuchsien.

Exercice 3.7 Montrer qu’un groupe kleinien est dénombrable.

Exercice 3.8 Si Γ est un groupe kleinien, montrer que les points fixes des elliptiques
de Γ ne peuvent pas s’accumuler.

Exercice 3.9

1. Lemme du ping-pong. Soit Γ un groupe agissant sur un ensemble X et soit Γ1 et
Γ2 deux sous-groupes de Γ (les joueurs de ping-pong) tels que Γ1 et Γ2 engendrent
Γ. On suppose qu’il existe deux parties X1 et X2 non vides de X (la table de
ping-pong) avec X2 non inclue dans X1 et avec

γ(X2) ⊂ X1 ∀γ ∈ Γ1\ {1}

γ(X1) ⊂ X2 ∀γ ∈ Γ2\ {1}

On suppose aussi que Γ1 contient au moins 3 éléments. Montrer que Γ = Γ1 ? Γ2.

2. Groupes de Shottky Soit α et β deux hyperboliques de H2 tels qu’il existe des
régions disjointes A+, A−, B+ et B− de H2 avec α(H2\A−) ⊂ A+ et β(H2\B−) ⊂
B+. Montrer que α et β engendrent un groupe libre de PSL2(R) et que ce groupe
est discret.
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Exercice 3.10 Dans certains livres de géométrie hyperbolique, on propose souvent
une définition différente, plus générale, de groupes kleiniens qui est plus adaptée à l’étude
de la dynamique du groupe sur le bord à l’infini de l’espace hyperbolique. Cette série a
pour but d’introduire cette définition et de montrer son utilité. On se place en dimension
3 et soit Γ ⊂ PSL2(C). On note Ω′ = Ω′(Γ) l’ensemble des points z ∈ Ĉ tels que l’action
de Γ en z est libre et discontinue (c’est-à-dire qu’il existe un voisinage ouvert U de z
tel que {γ ∈ Γ γ(U) ∩ U 6= ∅} = {e}). On note encore Ω = Ω(Γ) l’ensemble des points
z ∈ Ĉ tels que l’action de Γ en z est discontinue (c’est-à-dire qu’il existe un voisinage
ouvert U de z tel que {γ ∈ Γ γ(U) ∩ U 6= ∅} est fini). En dynamique, on dit que Ω′ est
l’ensemble des points errants pour l’action de Γ sur Ĉ.

Définition : On dit qu’un groupe Γ est kleinien si Ω′(Γ) 6= ∅.

1. Préliminaire sur les cercles isométriques.

Soit γ ∈ PSL2(C) tel que γ(∞) 6=∞. Alors

(a) Il existe un unique cercle C tel que γ(C) et C sont isométriques (pour la
métrique euclidienne de C. On dit que C est le cercle isométrique de γ (voir
aussi la série 1).

(b) Soit r l’inversion de cercle C. Alors il existe une isométrie euclidienne u tel
que γ = ur.
Indication : Soit C le cercle isométrique de γ (de centre α), C ′ celui de γ−1

(de centre α′). Si on pose σ la symétrie d’axe la médiatrice de [α, α′] et v la
rotation autour de α, on vérifiera que γ = σvr.

2. Généralités.

(a) Montrer que Ω et Ω′ sont des ouverts Γ-invariants.

(b) Montrer que si Γ est kleinien alors Γ est dénombrable.
Indication : Il suffit de trouver une famille sommable indexée par Γ.

(c) Montrer que Ω′(Γ)/Γ est séparé.

(d) Montrer qu’un groupe kleinien est discret.

(e) Pour montrer que la réciproque est fausse, on pourra considérer le groupe Γ =
PSL2(Z[i]) et faire l’observation suivante : si α ∈ Ĉ est fixé par un parabolique
ou un hyperbolique, alors α /∈ Ω.

3. Ensembles limites.

Définition : Soit Γ un groupe kleinien. Un point α ∈ Ĉ est un point limite de Γ
si α est un point d’accumulation d’une orbite Γ · z où z ∈ Ω′(Γ) (i.e il existe un
point z ∈ Ω′(Γ) et une suite injective (γn)n ⊂ Γ telle que γn(z) → α). On note
Λ(Γ) l’ensemble des points limite de Γ.

(a) On veut montrer dans un premier temps un résultat de convergence plus fort
qu’une convergence ponctuelle. Prenons α′ ∈ Λ et (γn) et z comme dans la
définition. On veut montrer qu’il existe un point α tel que la convergence de
γn(z) vers α′ est en fait uniforme sur les compacts de Ĉ\ {α}.
i. Montrer qu’on peut supposer z =∞.
ii. Montrer qu’il existe R > 0 tel que γ ({|z| > R}) ∩ {|z| > R} = ∅. Posons

CR = {|z| = R}.
iii. Montrer que le rayon ρn de γn(CR) tend vers 0.
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iv. Soit Rn le rayon du cercle isométrique de γn. En ayant auparavant montré
que Rρn = R2

n, montrer que Rn tend vers 0.
v. Quitte à extraire on peut poser α = lim γ−1

n (∞). Conclure.

(b) Soit maintenant (γn) une suite injective. Montrer qu’il existe une sous-suite
(γnk) et α, α′ ∈ Λ(Γ) tel que γnk converge vers α′ uniformément sur les
compacts de Ĉ\ {α}.

(c) Soit Γ un groupe kleinien. À l’aide de ce résulat de convergence, montrer les
points suivants

i. Le bord de l’espace s’écrit comme réunion disjointe Ĉ = Λ(Γ) ∪ Ω(Γ).

ii. Λ(Γ) est un fermé Γ-invariant et nulle part dense (i.e
◦

Λ(Γ) = ∅).
iii. Ω\Ω′ est discret dans dans Ω.
iv. Ω et Ω′ sont denses dans Ĉ.
v. Si Λ a plus de trois éléments, alors Λ n’a pas de points isolés. En par-

ticulier, il est non dénombrable. Par exemple, c’est un Cantor ou un
quasi-cercle.

En dimension 2, pour un groupe discret en général, on peut montrer avec des
arguments similaires l’alternative suivante

• Soit l’ensemble limite a un ou deux éléments,

• Soit c’est un Cantor,

• Soit c’est la sphère toute entière.

Exercice 3.11 (Groupes de triangles)

1. Soit k1, k2 et k3 trois entiers tels que 1
k1

+ 1
k2

+ 1
k3
< 1. Montrer qu’il existe un

triangle hyperbolique d’angles π
k1
, π
k2

et π
k3
. Notons le ABC.

2. Montrer que le groupe engendré par les réflexions (les inversions) d’axes (AB),
(AC) et (BC) forme un groupe discret. Donner une présentation du sous-groupe
d’indice 2 engendré par les isométries directes. En donner un domaine fondamental.
Quel est son aire ?

3. (Facultatif) En utilisant le théorème de Selberg (voir wikipédia), montrer que tout
groupe triangulaire admet un sous-groupe de surface compacte d’indice fini. Pour
k1, k2 et k3 explicites, déterminer un tel sous-groupe.

Exercice 3.12 (Classification des sous-groupes élémentaires)
Soit G un groupe élémentaire de PSL2(C) et soit {x1, · · · , xn} une orbite finie de G.

Montrer le théorème de classification suivant

1. Si n > 3 ou si {x1, · · · , xn} ⊂ H3, alors tous les éléments de G sont elliptiques et
G est conjugué à un sous-groupe de SO3(R).

2. Si n = 1 et {x1} ⊂ Ĉ, alors G est conjugué à un sous-groupe du groupe affine.

3. Si n = 2 et {x1, x2} ⊂ Ĉ, alors G est conjugué à un sous-groupe du groupe des
transformations z 7→ az, z 7→ a

z , a ∈ C∗.
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Exercice 3.13 (Une propriété des sous-groupes non élémentaires)
On veut montrer le résultat suivant : si Γ est un groupe non élémentaire de PSL2(C),

alors il existe une famille infinie d’éléments hyperboliques (γi) telle que si i 6= j, alors
Fγi ∩ Fγj = ∅.

1. Montrer que Γ contient un hyperbolique.

2. Soit donc γ un élément hyperbolique avec Fγ = {α, β}. Puisque Γ n’est pas
élémentaire, il existe γ′ qui ne fixe pas α et β. On distingue alors deux cas.

(a) Si {α, β} ∩ {γ′(α), γ′(β)} = ∅, on pose γ1 = γ′γγ′−1. Montrer que la suite
γn = γnγ1γ

−n convient.

(b) Si γ1 et γ, ont un point fixe en commun α, alors π = [γ1, γ] est parabolique
et il existe γ′′ tel que γ′′(α) 6= α. Posons π′ = γ′′πγ′′−1. Montrer alors que
soit γn = π′nγπ′−n soit γn = π′nγ1π

′−n convient.

Exercice 3.14 (Une application de théorème de Poincaré)
Trouver une présentation de PSL2(Z).

Exercice 3.15 (Encore un théorème de classification des isométries)

1. Rappeler encore une fois la définition de cercle isométrique C(γ) d’une isométrie
γ de H2.

2. Soit γ ∈PSL2(R). Montrer que

(a) γ est hyperbolique si et seulement si C(γ) et C(γ−1) ne s’intersectent pas.

(b) γ est elliptique si et seulement si C(γ) et C(γ−1) s’intersectent.

(c) γ est parabolique si et seulement si C(γ) et C(γ−1) sont tangents.

Exercice 3.16 (Les paraboliques stabilisent les horocycles)
Soit γ un élément de PSL2(R) qui fixe un point s ∈ S1. Montrer que γ est parabolique

si et seulement si, pour chaque horocycle passant par s, ω(s), on a γ(ω(s)) = ω(s).

Exercice 3.17 (Variétés à cusps)
Soit Γ un réseau non cocompact et D un domaine de Dirichlet pour Γ. Montrer

qu’il existe y a une correspondance bijective entre les classes de congruences de points à
l’infini de D et les classes de conjugaison de sous-groupes paraboliques maximaux de Γ.
Ce nombre s’appelle le nombres de cusps (ou cuspides) de la variété Γ\H2. Demander à
l’assistant de faire des dessins.

Corrigés des exercices (ou référence)

Exercice 3.1

Exercice 3.2

Exercice 3.3

Exercice 3.4

Exercice 3.5
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Exercice 3.6

Exercice 3.7

Exercice 3.8

Exercice 3.9

Exercice 3.10

Exercice 3.11

Exercice 3.12

Exercice 3.13

Exercice 3.14

Exercice 3.15

Exercice 3.16
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Exercice 3.17
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