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Exercice 1 .................................................................................. 

1) a) La fonction nf  est polynomiale donc dérivable sur ℝ  et, a fortiori, 

dérivable sur [ ]0,1 . 

De plus, pour tout n  de *ℕ , on a ( ) 1 2 1

1 1

n n

k k
n

k k

f x k k x k x− −

= =

′ = × =   et ( )nf x′  est 

strictement positive comme somme de termes tous positifs (car 1 0k ≥ >  et 0x ≥ ) 

dont le premier est égal à 1. 

Par conséquent, nf  est strictement croissante sur [ ]0,1 . 

 

 b) nf  est polynomiale donc continue sur [ ]0,1  et elle est strictement croissante 

sur [ ]0,1  donc elle réalise une bijection de [ ]0,1  sur ( ) ( )[ ]0 , 1n nf f . 

On a ( )0 0 1nf = <  et ( ) ( )
1

1
1

2

n

n

k

n n
f k

=

+= =  donc, comme 1n ≥ , on a 

( ) ( )1
1 1

2
n

n n
f

+= ≥ , et ainsi, 1 appartient à ( ) ( )[ ]0 , 1n nf f , ce qui montre, par 

bijectivité de nf , que l’équation ( ) 1nf x =  possède une seule solution, notée nu , 

élément de [ ]0,1 . 

 

 c) Avec 1n = , l’équation ( ) 1nf x =  devient ( )1 1f x = , c’est-à-dire 1x =  dont 

la solution plus qu’évidente est 1 1u = . 

 

2) a) On a ( ) ( )
1

1
1

1 1

1
n n

k k n
n

k k

f x k x k x n x
+

+
+

= =
= = + +  . 

On trouve ainsi : 

 

( ) ( ) ( ) 1
1 1 n

n nf x f x n x +
+ = + +  

 

 b) On en déduit : ( ) ( ) ( ) ( )1 1
1 1 1 1n n

n n n n n nf u f u n u n u+ +
+ = + + = + + . 

Comme 0nu ≥ , on a ( ) 11 1 1n
nn u ++ + ≥  et on obtient : 

 

( )1 1n nf u+ ≥  

 



Corrigé  

 c) Par définition de la suite ( ) *n n
u ∈ℕ , on sait que 1nu +  est la solution de 

l’équation ( )1 1nf x+ = , on a donc ( )1 1 1n nf u+ + =  et la relation ( )1 1n nf u+ ≥  s’écrit 

maintenant : ( ) ( )1 1 1n n n nf u f u+ + +≥ . 

Par stricte croissance de 1nf + , on peut conclure que 1n nu u +≥ , et ainsi, la suite 

( ) *n n
u

∈ℕ
 est décroissante. 

 

 d) La suite ( ) *n n
u

∈ℕ
 est décroissante et minorée par 0 donc elle converge. 

 

3) a) Comme 1x ≠ , on a 
1

0

1

1

n n
k

k

x
x

x

+

=

−=
− . 

 

b) En posant ( )
0

n

k
n

k

g x x
=

= , alors, par linéarité de la dérivation, on a 

( ) 1

1

n

k
n

k

g x k x −

=

′ =  (le terme d’indice 0 de la première somme étant égal à 1, sa 

dérivée est nulle). De plus, comme ( )
11

1

n

n

x
g x

x

+−=
−

 pour 1x ≠ , les règles de 

dérivation donnent : 
 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 1 1

2 2

1 1 1 1 1 1 1

1 1

n n n n n

n

n x x x n x n x x
g x

x x

+ + +− + − − − × − − + + + + −′ = =
− −

En ordonnant suivant les puissances décroissantes : 
 

1
1

2
1

( 1) 1
1,

(1 )

n n n
k

k

n x n x
x k x

x

+
−

=

− + +∀ ≠ =
−  

 

 c) Pour tout [ ]0,1x ∈ , on a ( ) 1

1 1

n n

k k
n

k k

f x k x x k x −

= =
= =   mais, avec [ [0,1x ∈ , 

la condition 1x ≠  est réalisée et on obtient, grâce à la question précédente : 
 

[ [ ( )
2 1

2

( 1)
0,1 ,

(1 )

n n

n

n x n x x
x f x

x

+ +− + +∀ ∈ =
−

 

 

4) a) Par définition, on a ( )
2

2
2

1

2k

k

f x k x x x
=

= = +  et on sait que 2u  est une 

solution de l’équation ( )2 1f x = , donc solution de 22 1x x+ = , soit en ordonnant : 

22 1 0x x+ − = . Le discriminant est Δ 9=  et on en déduit que les deux solutions 

de cette équation sont 1−  et 
1

2
. 

Comme 2 0u ≥ , on est certain que 2

1

2
u = . 
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Comme la suite ( ) *n n
u

∈ℕ
 est décroissante et comme 2

1

2
u = , alors, pour tout entier 

naturel 2n ≥ , on a 2nu u≤ , soit 
1

2
nu ≤ . 

On sait depuis la question 1c) que 0nu ≥  donc on obtient : 

 

1
2, 0

2
nn u∀ ≥ ≤ ≤  

 

 b) De l’encadrement précédent et par croissance de la fonction nx x֏  sur +ℝ  

donc sur 
1

0,
2

 
  

, on en déduit : ( )1
0

2

n

n
nu≤ ≤ . 

Comme ] [1
1,1

2
∈ − , on a ( )1

lim 0
2

n

n→+∞
= , et on obtient, par encadrement : 

 

lim 0n
n

n
u

→+∞
=  

 

Du même encadrement, on tire aussi : ( )1
0

2

n

n
nnu n≤ ≤ . 

Comme ] [1
1,1

2
∈ − , on a, par croissances comparées, ( )1

lim 0
2

n

n
n

→+∞
= , et 

finalement, on trouve, encore une fois par encadrement : 
 

lim 0n
n

n
nu

→+∞
=  

 

 c) Par définition de nu , on a ( ) 1n nf u =  et comme, pour tout entier 2n ≥ , on a 

1
0

2
nu≤ ≤ , on est sûr que 1nu ≠  et on peut appliquer la question 3c) avec nx u= , 

ce qui donne : 

2n∀ ≥ , 
2 1

2

( 1)
1

(1 )

n n
n n n

n

n nu u u

u

+ +− + + =
−

 

On a donc 2 2 1(1 ) ( 1)n n
n n

n nn nu u u u+ +− = − + + , d’où : 
2 2 1(1 ) ( 1)n

n n
n

nnu n nu u u+ +− − = − +  

En développant le membre de gauche, on trouve bien : 
 

( )2 2 12, 3 1 1n n
n n n nn u u nu n u+ +∀ ≥ − + = − +  

 

 d) Dans l’objectif de passer à la limite en utilisant les deux résultats de la 

question 4b), on peut réécrire ceci sous la forme :  

( )2 23 1 1n n
n n n n n nu u u nu u n u− + = × − +  

 



Corrigé  

Avec encore un petit effort, on obtient : 

( )2 23 1 n n n
n n n n n n nu u u nu u nu u− + = × − +  

On sait que lim 0n
n

n
u

→+∞
= , lim 0n

n
n

nu
→+∞

=  et lim n
n

u
→+∞

= ℓ  donc, après passage à la 

limite, il reste : 2 3 1 0− + =ℓ ℓ . 

Le discriminant de cette équation du second degré est égal à 5 donc cette équation 

admet deux solutions qui sont 1

3 5

2

+=ℓ  et 2

3 5

2

−=ℓ . 

 • D’une part, on sait que 
1

0
2

nu≤ ≤  donc 
1

0
2

≤ ≤ℓ . 

 • D’autre part, comme 4 5 9≤ ≤ , on a 2 5 3≤ ≤ , ce qui donne 1

5
3

2
≤ ≤ℓ  et 

2

1
0

2
≤ ≤ℓ . 

Comme 1

1

2
>ℓ , la seule option est donc : 

 

2

3 5

2

−= =ℓ ℓ  

Exercice 2 .................................................................................. 

1) a) Soit M une matrice quelconque de ( )3 ℝM . 

On a les équivalences suivantes : 

( ) ( )2, , ,M E a b M M a b∈ ⇔ ∃ ∈ =ℝ . 

( ) 2, ,M E a b∈ ⇔ ∃ ∈ℝ  

1 0 1 0 1 0

2 0 2 0 1 1 1

1 0 1 0 1 0

a b a

M b a b b a b

a b a

     
     = − = + −     
     
     

. 

On en déduit que E  est le sous-espace vectoriel de ( )3 ℝM  engendré par les deux 

matrices 

1 0 1

0 2 0

1 0 1

B

 
 =  
 
 

 et 

0 1 0

1 1 1

0 1 0

C

 
 = − 
 
 

. 

 

b) La famille ( ),B C  est donc génératrice de E  et elle est libre car constituée 

de deux matrices non proportionnelles donc c’est une base de E  et ainsi la 

dimension de E  est égale à 2. 

 

2) Les matrices de E  sont symétriques donc diagonalisables. 

En revanche, elles ont deux colonnes égales (la première et la troisième) donc 

elles ne sont pas inversibles. 
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3) On a 3A B C= +  donc ( )1,3A M= , ce qui prouve que A  appartient à E . 

 

4) On peut proposer : 
 

def matA(): 

  return np.array([[1,3,1],[3,-1,3],[1,3,1]]) 

 

5) a) Comme A  appartient à E , la question 2) garantit que A  n’est pas 

inversible, ce qui implique que 0 est valeur propre de A . 

 

 b) On a 

4 3 1

5 3 6 3

1 3 4

A I

− 
 − = − 
 − 

 et la somme des trois colonnes est nulle, ce 

qui prouve que le rang de 5A I−  est strictement inférieur à 3, donc que 5A I−  

n’est pas inversible. 

De même, 

5 3 1

4 3 3 3

1 3 5

A I

 
 + =  
 
 

 et on peut voir que la somme de la première 

colonne et de la troisième est égale au double de la deuxième, ce qui prouve que le 

rang de 4A I+  est strictement inférieur à 3, et ainsi 4A I+  n’est pas inversible. 

Les deux autres valeurs propres de A  sont donc 4−  et 5 . 

 

 c) Recherche des sous-espaces propres de A . Soit 

x

X y

z

 
 = ∈ 
 
 

( )3,1 ℝM . 

• Pour la valeur propre 0, on résout le système 0AX =  et on a : 

( )

3 0
33 0

0 3 3 0
3 3 3 03 3 0

3 0

x y z
z x yx y z

AX x y z
x y x yx y z

x y z

+ + = = − −+ + = = ⇔ − + = ⇔ ⇔   − + − − =− + =   + + =

 

Finalement, on obtient : 

1
3

0 0 0
10 0 0

1

x
z x y z x

AX X x
y y

x

   
= − − = −     = ⇔ ⇔ ⇔ = =     − = =     − −   

 

Si on pose 

1

0

1

U

 
 =  
 − 

, alors le sous-espace propre de A  associé à la valeur propre 

0  est ( )Vect U  et comme la famille ( )U  est constituée d’un seul vecteur non nul, 

c’est une base de ce sous-espace propre. 
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  • Pour la valeur propre 5 , on résout le système 5AX X=  et on a : 

3 5 4 3 0 4 3 0

5 3 3 5 3 6 3 0 2 0

3 5 3 4 0 3 4 0

x y z x x y z x y z

AX X x y z y x y z x y z

x y z z x y z x y z

+ + = − + + = − + + =  
  = ⇔ − + = ⇔ − + = ⇔ − + =  
  + + = + − = + − =  

 

On trouve (pivot de Gauss) : 

2 2 1

3 3 1

4
4

4 3 0 4 3 0
4 4 0

5 5 5 0

15 15 0

L L L
L L L

x y z x y z
x z

AX X y z y z
y z

y z y z

← +
← +

− + + = − + + = 
− + = = ⇔ − + = ⇔ = ⇔   = − = = 

. 

Finalement, 

1

5 1

1

z
x z

AX X X z z
y z

z

   
=    = ⇔ ⇔ = =    =    

   

. 

Si on pose 

1

1

1

V

 
 =  
 
 

, alors le sous-espace propre de A  associé à la valeur propre 5  

est ( )Vect V  et comme la famille ( )V  est constituée d’un seul vecteur non nul, 

c’est une base de ce sous-espace propre. 

  • Pour la valeur propre 4− , on résout le système 4AX X= −  et on a : 

3 4 5 3 0 5 3 0

4 3 3 4 3 3 3 0 0

3 4 3 5 0 3 5 0

x y z x x y z x y z

AX X x y z y x y z x y z

x y z z x y z x y z

+ + = − + + = + + =  
  = − ⇔ − + = − ⇔ + + = ⇔ + + =  
  + + = − + + = + + =  

 

On trouve (pivot de Gauss) : 

2 2 1

3 3 1

5
5

5 3 0 5 3 0
5 5 0

4 2 4 0 2
2

12 24 0 2

L L L
L L L

x y z x y z
x z

AX X y z y z
y z

y z y z

← −
← −

+ + = + + = 
− = = − ⇔ + = ⇔ = − ⇔   = − + = = − 

. 

Finalement, 

1

4 2 2
2

1

z
x z

AX X X z z
y z

z

   
=    = − ⇔ ⇔ = − = −    = −    

   

. 

Si on pose 

1

2

1

W

 
 = − 
 
 

, alors le sous-espace propre de A  associé à la valeur propre 

4−  est ( )Vect W  et comme la famille ( )W  est constituée d’un seul vecteur non 

nul, c’est une base de ce sous-espace propre. 

 

  • Pour conclure, la famille ( ), ,U V W  est la concaténation des bases des 

sous-espaces propres de A  et ces sous-espaces propres sont associés à des valeurs 

propres distinctes donc ( ), ,U V W  est une famille libre. De plus, elle contient trois 
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vecteurs de ( )3,1 ℝM  qui est de dimension 3, c’est donc une base de ( )3,1 ℝM  et, 

par construction, elle est bien formée de vecteurs propres de A . 

 

6) D’après le script proposé, 1r  est le rang de 5A I− . 

Le théorème du rang donne ( ) ( )rg 5 dim Ker 5 dimA I A I− + − = ( )3,1 3=ℝM  et 

comme ( )Ker 5A I−  est le sous-espace propre de A  associé à la valeur propre 5, 

on a, grâce à la question 5c), ( )dim Ker 5 1A I− =  d’où 1 2r = . 

Toujours d’après le script proposé, 2r  est le rang de 4A I+ , et le même 

raisonnement donne ( )dim Ker 4 1A I+ = , ce qui donne 2 2r = . 

 

7) a) Il suffit de tester U , V  et W  sur ( ),M a b . 

On a alors : 

 • ( )
1 0

, 2 0 0 0

1 0

a b a

M a b U b a b b U

a b a

    
    = − = = ×    
    −    

 donc U  est vecteur propre 

de ( ),M a b  associé à la valeur propre 0. 

 

 • ( ) ( ) ( )
1 2 1

, 2 1 2 2 1 2

1 2 1

a b a a b

M a b V b a b b a b a b a b V

a b a a b

+      
      = − = + = + = +      
      +      

 donc 

V  est vecteur propre de ( ),M a b  associé à la valeur propre 2a b+ . 

 

 • ( ) ( ) ( )
1 2 2 1

, 2 2 4 4 2 2 2 2 2

1 2 2 1

a b a a b

M a b W b a b b b a a b a b W

a b a a b

−      
      = − − = − = − − = −      
      −      

 

donc W  est vecteur propre de ( ),M a b  associé à la valeur propre 2 2a b− . 
 

Conclusion : U , V  et W  sont vecteurs propres de toutes les matrices de E . 

 

 b) La matrice P  dont les colonnes sont les vecteurs U , V  et W  est inversible 

puisque ( ), ,U V W  est une base de ( )3,1 ℝM  et la relation de changement de base 

donne ( ) 1,M a b PDP −= , où D  est la matrice diagonale contenant les valeurs 

propres de ( ),M a b  associées respectivement à U , V  et W  sur sa diagonale. 

Une récurrence permet d’établir que ( ) 1,
n nM a b PD P −=  et il reste à calculer 

1P −  pour obtenir par simple produit matriciel la matrice ( ),
n

M a b . 
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 c) On peut proposer la fonction suivante : 

 

def puissanceM(a,b,n): 

  D=np.array([[0,0,0],[0,2*a+b,0],[0,0,2*a-2*b]]) 

  P=np.array([[1,1,1],[0,1,-2],[-1,1,1]]) 

  M=np.dot(P,np.dot(D**n,al.inv(P))) 

  return M 

Exercice 3 .................................................................................. 

1) • La fonction nf  est nulle donc positive sur les intervalles ] [,0−∞  et ] [,n + ∞ , 

et elle est positive sur [ ]0,n  car avec x n≤ , on a 1 0
x

n
− ≥ . 

 • Sur les intervalles ] [,0−∞  et ] [,n + ∞ , nf  est nulle donc continue, et sur 

l’intervalle [ ]0,n , nf  est continue car polynomiale. Ainsi, nf  est continue sur ℝ  

sauf peut-être en 0 et en n . 

 • Les intégrales ( )0

dnf t t
−∞  et ( )dn

n
f t t

+∞

  sont nulles car nf  est nulle sur 

] [,0−∞  et ] [,n + ∞ . L’intégrale ( )
0

d
n

nf t t  existe (intégrale d’une fonction 

continue sur un segment) et on a :  

( )
0

d
n

nf t t ( ) ( )
1

0
0

1 d 1 0 1 1

nn n
n t t

t
n n

−
 = − = − − = − + =    

On a finalement ( )d 0 1 0 1nf t t
+∞

−∞
= + + = . 

Bilan : on peut conclure que nf  est une densité. 

 

2) a) La fonction qui à t  associe ( )1
t

n
− ( )nf t  est nulle sur les intervalles ] [,0−∞  

et ] [,n + ∞  et elle est continue sur [ ]0,n  comme fonction polynomiale. 

Par conséquent, les intégrales ( ) ( )
0

1 dn

t
f t t

n−∞
− ( ) ( )1 dn

n

t
f t t

n

+∞
−  sont nulles et 

l’intégrale ( ) ( )
0

1 d
n

n

t
f t t

n
−  existe (intégrale d’une fonction continue sur un 

segment) donc ( ) ( )1 dn

t
f t t

n

+∞

−∞
−  converge (absolument car les fonctions 

intégrées positives), ce qui prouve que ( )1 nX
E

n
−  existe. 

D’après le théorème de transfert, on a alors : 

( )1 nX
E

n
− = ( ) ( )1 dn

t
f t t

n

+∞

−∞
− ( ) ( )

1

0
0

1 d 1
1

nn n
n t n t

t
n n n

+
 = − = − − +   
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On trouve enfin :  

 

( )1 nX
E

n
−

1

n

n
=

+
 

 

Avec la fonction qui à t  associe ( )
2

1
t

n
− ( )nf t , on prouve de même que 

( )( )2

1 nX
E

n
−  existe et le théorème de transfert assure de plus : 

( )( )2

1 nX
E

n
− = ( ) ( )

2

1 dn

t
f t t

n

+∞

−∞
− ( ) ( )

1 2

0
0

1 d 1
2

nn n
n t n t

t
n n n

+ +
 − = − − +   

Cette fois, on obtient : 

 

( )( )2

1 nX
E

n
−

2

n

n
=

+
 

 

 b) On a ( )1 nX
n

n
− = nn X−  donc ( )1 n

n

X
X n n

n
= − −  et ainsi, comme 

( )1 nX

n
−  possède une espérance, alors nX  aussi. 

Par linéarité de l’espérance, on trouve : 

( )nE X ( )1 nX
n n E

n
= − −

( ) 21

1 1

n n nn
n n

n n

+ −
= − × =

+ +
 

On a finalement : 

( )
1

n

n
E X

n
=

+
 

 

On a aussi ( )
2

2

2

2 1
1 1n

n n

X
X X

n n n
− = − +  donc ( )

2

2

2

1 2
1 1n

n n

X
X X

n n n
= − − +  et on 

trouve ( )
2

2 2 21 2n
n n

X
X n n nX

n
= − − + . 

Comme ( )
2

1 nX

n
−  et nX  possèdent une espérance alors 2

nX  aussi et en 

remplaçant ce qui est connu, on obtient, par linéarité de l’espérance : 

( ) ( )
3 2

2 2 2 2 22
2

2 2 1
n n

n n n
E X n n n E X n n

n n n
= × − + = − + =

+ + + ( )2
1

2 1

n

n n
− +

+ +
. 

On a donc ( )2 2
nE X n= ( )2 2

2 1n n

− +
+ + ( )( )

22

1 2

n

n n
=

+ +
. 

Le théorème de Koenig-Huygens permet de terminer le travail : 



Corrigé  

( ) ( ) ( ) ( )( ) ( )
( ) ( )
( ) ( )

2 2
22 2

2 2

2 1 22

1 2 1 1 2
n n n

n nn n
V X E X E X n

n n n n n

+ − +
= − = − = ×

+ + + + +
 

En simplifiant, on trouve : 

 

( )
( ) ( )

3

2
1 2

n

n
V X

n n
=

+ +
 

 

3) Par définition, on a ( ) ( )d
x

n nF x f t t
−∞

=  . 

 • Pour 0x < , on obtient : ( ) 0d 0
x

nF x t
−∞

= = . 

 • Pour [ ]0,x n∈ , on obtient : 

( ) 0

0dnF x t
−∞

= + ( ) ( ) ( ) ( )
1

0
0

1 d 1 1 1 1 1

xn n n n
x t t x x

t
n n n n

−
 − = − − = − − + = − −   . 

 • Pour x n> , on obtient : ( ) ( )0

0
0d d 0d 0 1 0 1

n

n n
n

F x t f t t t
+∞

−∞
= + + = + + =   . 

En résumé : 
 

( )nF x = ( )
0                    si 0

1 1    si 0

1                     si  

n

x

x
x n

n

x n

<
 − − ≤ ≤


>

 

 

4) a) Pour tout réel x  strictement négatif, on a ( ) 0nF x =  donc ( )lim 0n
n

F x
→+∞

= . 

 

 b) En fait, avec la deuxième ligne de l’accolade ci-dessus, dès que n x≥ , on a 

( )nF x = ( )1 1

n
x

n
− − . Comme 1x x x≤ < +       , ceci est valable dès que 

1n x≥ +    (condition suffisante). 

 

 c) Si 0x = , alors ( )ln 1 ln(1) 0
x

nn
n

− = =  d’où : ( )ll nim 1 0
n

n
x

n→+∞
− = . 

  Si 0x > , alors, comme lim 0
n

x

n→+∞
− = , on a l’équivalent ( )ln 1

x x

n n+∞
− −∼  et 

on obtient ( )ln 1
x

n x
n +∞

− −∼  d’où : 0x∀ > , ( )lnli 1m
n n

n
x

x
→+∞

− = − . 

Ceci restant valable pour 0x = , on conclut : 

 

( )ln 10, lim
n

xx
n

n
x

→+∞
−∀ = −≥  
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 d) Pour tout 0x ≥  et pour tout n x≥ , la question 4b) permet d’écrire 

( )nF x = ( ) ( )( )1 1 1 exp ln 1

n
x x

n
n n

− − = − −  donc, d’après la limite obtenue à la 

question 4c) et grâce à la continuité de la fonction exponentielle en x− , on 

obtient : 

0,x∀ ≥  ( )lim 1 e x
n

n
F x −

→+∞
= −  

En résumé, on a avec la question 4a) : 

 

( ) 1 e  si 0
l

0          si
i

 
m

0

x

n
n

x
F x

x

−

→+∞

 − ≥
=  <

 

 

On peut conclure que la suite ( ) *n n
X

∈ℕ
 converge en loi vers une variable X  

suivant la loi exponentielle de paramètre 1. 

 

5) a) D’après le cours traitant de la loi uniforme sur [ ]0,1 , on a : 

 

( )
0 si 0

 si 0 1

1 si 1

x

G x x x

x

<
= ≤ ≤
 >

 

 

 b) Pour tout réel x, on a : 

( ) ( ) ( )
0

/

n

n n n
P Z x P n M x P M x n

>
↓

> = > = >  

 

Dire que la variable 
n

M  (qui prend la plus petite des valeurs prises par 1,..., n
U U ) 

prend une valeur strictement supérieure à /x n , c’est dire que chacune des 

variables 1 2, ,...,
n

U U U  a pris une valeur strictement supérieure à /x n  (sinon, 

l’une des variables 1,..., n
U U  aurait pris une valeur inférieure ou égale à /x n , et 

mécaniquement 
n

M  aussi, donc 
n

M  ne serait pas strictement supérieure à /x n ). 

On a donc : 

( )nZ x> = ( )
1

/
n

k

k

U x n
=

>∩  

Comme 1 2, ,...,
n

U U U  sont mutuellement indépendantes, on obtient : 

( )nP Z x> = ( )
1

/
n

k

k

P U x n
=

>∏  

Les variables kU  suivent la même loi, de fonction de répartition G , donc : 

( )nP Z x> = ( )( ) ( )( )
1

1 / 1 /
n

n

k

G x n G x n
=

− = −∏  



Corrigé  

D’après la question 5a), on sait que ( )
0       si / 0

/ /   si 0 / 1

1        si / 1

x n

G x n x n x n

x n

<
= ≤ ≤
 >

 et on en 

déduit : ( )/G x n =
0       si 0

/   si 0

1       si 

x

x n x n

x n

<
 ≤ ≤
 >

. 

En remplaçant dans ( )nP Z x> , on obtient : 

 

( )nP Z x> = ( )
1               si 0

1  si 0

0               si 

n

x

x
x n

n

x n

<
 − ≤ ≤


>

 

 

Comme la fonction de répartition de 
n

Z  est la fonction 
nZF  définie par 

( ) ( ) ( )1
nZ n nF x P Z x P Z x= ≤ = − > , on obtient : 

 

( )
nZF x = ( )

0                 si 0

1 1  si 0

1                 si 

n

x

x
x n

n

x n

<
 − − ≤ ≤


>

 

 

 c) On voit, grâce aux résultats des questions 3) et 5b) que les fonctions de 

répartition de nZ  et nX  sont égales donc nZ  suit la même loi que nX . 

 

 d) D’après la question 5c), simuler nX  revient à simuler nZ  donc, comme 

( )1min ,...,n nZ n U U= , on peut proposer : 
 

def simulX(n): 

  U=rd.random(n) # simulation de U1,...,Un 

  return n*np.min(U) 

Problème ................................................................................... 

1) Pour la simulation de nX , on peut proposer le code suivant où la variable 

informatique X contiendra à la fin la valeur prise par nX , et dont la boucle while 

traduit le fait que tant qu’on pioche une boule noire on recommence et le nombre 

de tirages augmente d’une unité.  
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On peut donc proposer : 
 

def varX(n): 

    k=rd.randint(1,n+2)# choix de l’urne 

    if k==n+1: 

     X=0 # l’urne n+1 n’a aucune boule blanche 

    elif k==1: 

     X=1 # l’urne 1 n’a que des boules blanches 

    else: 

     X=1 # maintenant, on peut initialiser X à 1 

     while rd.randint(1,n+1)<=k-1: 

       X=X+1 

    return(X) 

2) On choisit une urne au hasard (ce qui garantit l’équiprobabilité) et il y a 1n +  

urnes donc : 

 

( ) 1

1
kP U

n
=

+
 

 

3) a) Pour tout k  de � �1, n , la loi de nX , conditionnellement à l’événement kU , 

est la loi géométrique de paramètre 
1n k

n

− +
 : en effet, comme on sait qu’on 

pioche dans l’urne numérotée k , on a affaire au rang de la première boule blanche 

lors de tirages avec remise (donc indépendants) pour lesquels la probabilité de 

piocher une boule blanche est égale à 
1n k

n

− +
. 

 

 b) Sachant quelle urne a été choisie, on connaît la loi conditionnelle de nX  

donc on peut proposer : 
 

else: 

   X=rd.geometric((n-k+1)/n) 
return(X) 

 

4) a) L’urne numérotée 1n +  ne contient aucune boule blanche donc on n’aura, à 

coup sûr, aucune boule blanche au premier tirage. 

Par conséquent : 

 

( )
1

1 0
nU nP X

+
= =  

 

b) Pour tout k  de � �1, n , on sait que la loi de nX , conditionnellement à 

l’événement kU , est la loi géométrique de paramètre 
1n k

n

− +
. 

 

 



Corrigé  

On a donc : 

( ) 1
1

kU n

n k
P X

n

− += =  

 

c) La formule des probabilités totales associée au système complet 

d’événements ( )
� �1, 1k k n

U ∈ + , tous de probabilité non nulle, s’écrit : 

( ) ( ) ( )
1

1

1 1
k

n

n k U n

k

P X P U P X
+

=
= = =  

Le terme d’indice 1n +  est nul donc on peut l’enlever sans changer la valeur de la 

somme, d’où : 

( ) ( ) ( )
1

1 1
k

n

n k U n

k

P X P U P X
=

= = =  

Maintenant, on remplace tout ce que l’on connaît, ce qui donne : 

( )
( )

( )
1 1

1 1 1
1 1

1 1

n n

n

k k

n k
P X n k

n n n n= =

− += = × = − +
+ +   

On pose 1i n k= − + , ce qui inverse les bornes de la somme mais elles restent les 

mêmes : quand 1k = , on a i n=  et quand k n= , on a 1i = . 

On obtient alors : ( )
( ) ( )

( )

1

1 1 1
1

1 1 2

n

n

i

n n
P X i

n n n n=

+= = = ×
+ + . 

Il reste à simplifier et on trouve : 
 

( ) 1
1

2
nP X = =  

 

5) a) Même argument qu’à la question 4a) : l’urne numérotée 1n +  ne contient 

aucune boule blanche donc on n’obtiendra jamais de boule blanche et en 

particulier, on n’aura aucune boule blanche au ièmej  tirage. 

On a donc : 
 

( )
1

0
nU nP X j

+
= =  

 

b) Pour tout k  de � �1, n , comme à la question 4b), on sait que la loi de nX , 

conditionnellement à l’événement kU , est la loi géométrique de paramètre 

1n k

n

− +
 donc : 

 

( )
kU nP X j= = ( ) 1

1 1
j

k n k

n n

−− − +×  

 

c) Toujours avec la formule des probabilités totales associée au système 

complet d’événements ( )
� �1, 1k k n

U ∈ + , on a, toujours en enlevant le terme d’indice 

1n +  qui est nul : 
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{ }* \ 1j∀ ∈ℕ , ( ) ( ) ( ) ( ) ( )
1

1 1
k k

n n

n k U n k U n

k k

P X j P U P X j P U P X j
+

= =
= = = = =   

On remplace : { }* \ 1j∀ ∈ℕ , ( )
1

1

1

n

n
k

P X j
n=

= = ×
+ ( ) 1

1 1
j

k n k

n n

−− − +× . 

On écrit 
1 1

1
n k k

n n

− + −= − , ce qui permet d’obtenir : 

{ }* \ 1j∀ ∈ℕ , ( )
1

1

1

n

n

k

P X j
n=

= = ×
+ ( ) ( )1

1 1
1

j
k k

n n

−− −× −  

Il n’y a plus qu’à développer : 

{ }* \ 1j∀ ∈ℕ , ( )
1

1

1

n

n

k

P X j
n=

= = ×
+ ( ) ( )1

1 1
j j

k k

n n

−− − −  
 

Le changement d’indice 1h k= −  donne : ( )nP X j= = ( ) ( )11

0

1

1

j jn

h

h h

n n n

−−

=

 − +  
 . 

L’indice d’une somme est muet donc on a bien : 

 

{ }* \ 1j∀ ∈ℕ , ( )nP X j= = ( ) ( )11

0

1

1

j jn

k

k k

n n n

−−

=

 − +  
  

 

6) a) Pour tout � �0, 1k n∈ − , on a 1 0 1
k

n
− < ≤ <  donc la série ( ) j

j

k

n
  est 

convergente et on peut scinder la somme ( ) ( )1

2

j j

j

k k

n n

−+∞

=

 − 
 

  en deux sommes 

(puisque les séries créées sont convergentes). 

On obtient alors : 

( ) ( )1

2

j j

j

k k

n n

−+∞

=

 − = 
 

 ( ) ( ) ( ) ( )
1

1

2 2 1 2

i j
j j i j

j j i j

k k k k k

n n n n n

= −
−+∞ +∞ +∞ +∞↓

= = = =
− = − =     

(seul le terme d’indice 1i =  de la première somme subsiste, les autres se 

simplifient). 

 

 b) Comme nX  prend des valeurs entières, on a ( ) ( )
2

2n n
j

P X P X j
+∞

=
≥ = =  

sans problème de convergence de la série (sa somme est une probabilité). 

On a donc : 

( )2nP X ≥ = ( ) ( ) ( ) ( )1 11 1

2 0 2 0

1 1

1 1

j j j jn n

j k j k

k k k k

n n n n n n

− −+∞ − +∞ −

= = = =

   − = −   + +   
    

 



Corrigé  

Pour chaque k  de � �0, 1n − , on a vu que la série géométrique de raison 
k

n
 est 

convergente donc on peut permuter les sommes, ce qui donne : 

( )2nP X ≥ = ( ) ( )11

0 2

1

1

j jn

k j

k k

n n n

−− +∞

= =

 − +  
  

Grâce à la question 6a), on obtient : 

( )2nP X ≥ =
( )

1 1

0 0

1 1

1 1

n n

k k

k
k

n n n n

− −

= =
=

+ +   

Pour 1n = , on trouve ( )1 2 0P X ≥ =  (la somme contient un seul terme égal à 0), 

et pour 2n ≥ , on peut écrire, en enlevant le premier terme de la somme qui est 

nul : 

( ) ( ) ( )
( )1

1

11 1
2

1 1 2

n

n
k

n n
P X k

n n n n

−

=

−
≥ = = ×

+ +  

Cette égalité reste valable pour 1n =  puisque elle donne ( )1 2 0P X ≥ = , donc on 

peut conclure : 

( ) ( )
* 1
, 2

2 1
n

n
n P X

n

−∀ ∈ ≥ =
+

ℕ  

 

7) a) La famille [ ] [ ] [ ]( )0 , 1 , 2n n nX X X= = ≥  est un système complet 

d’événements donc on a : 

( ) ( ) ( )0 1 2 1n n nP X P X P X= + = + ≥ =  

On en déduit : 

( ) ( ) ( )0 1 1 2n n nP X P X P X= = − = − ≥ ( )
1 1

1
2 2 1

n

n

−= − −
+

 

On obtient ( ) ( ) ( ) ( ) ( )
1 1 1 1 2

0
2 2 1 2 1 2 1 2 1

n

n n n
P X

n n n n

− + −= = − = − =
+ + + +

 et enfin : 

 

( ) 1
0

1
nP X

n
= =

+
 

 

b) En fait, ne jamais obtenir de boule blanche, c’est avoir choisi l’urne 

numérotée 1n +  (car dans les autres urnes, par propriété de la loi géométrique, on 

tombera sur une boule blanche « un jour ou l’autre »). On a donc : 

( ) ( )1

1
0

1
n nP X P U

n
+= = =

+
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8) a) Pour tout { }* \ 1j ∈ℕ , on a ( )nj P X j= = ( ) ( )11

0

1

1

j jn

k

k k
j j

n n n

−−

=

 − +  
  et en 

mettant ( ) 1j
k

j
n

−

 en facteur dans la somme, on trouve : 

( )nj P X j= = ( ) ( )11

0

1
1

1

jn

k

k k
j

n n n

−−

=
−

+   

Sommons pour j  allant de 2 à N  (avec 2N ≥ ) : 

( )
2

N

n
j

j P X j
=

= = ( ) ( )11

2 0

1
1

1

jN n

j k

k k
j

n n n

−−

= =
−

+   

Les sommes sont finies donc on peut les permuter : 

( )
2

1

1

N

n
j

j P X j
n=

= =
+ ( ) ( )11

0 2

1
jn N

k j

k k
j

n n

−−

= =
− ( ) ( ) 11

0 2

1
1

1

jn N

k j

k k
j

n n n

−−

= =
= −

+    

Comme à la question 6a), pour chaque k  de � �0, 1n − , on a 1 1
k

n
− < <  donc la 

série géométrique dérivée première de terme général ( ) 1j
k

j
n

−

 est absolument 

convergente, ce qui prouve que ( )
2

N

n
j

j P X j
=

=  possède une limite finie quand 

N  tend vers +∞ . 

Par conséquent, la série de terme général ( )nj P X j=  est convergente 

(absolument convergente car à termes positifs) donc nX  possède une espérance. 

De plus, après passage à la limite quand N  tend vers +∞ , on obtient : 

( )
2

1

1
n

j

j P X j
n

+∞

=
= =

+ ( ) ( ) 11

0 2

1
jn

k j

k k
j

n n

−− +∞

= =
−   

Il reste à compléter pour obtenir ( )nE X  : 

( ) ( ) ( ) ( ) ( )
2 2

1
0 0 1 1

2
n n n n

j j

E X P X P X j P X j j P X j
+∞ +∞

= =
= × = + × = + = = + =   

On obtient donc : 

( )nE X ( ) ( ) 11

0 2

1 1
1

2 1

jn

k j

k k
j

n n n

−− +∞

= =
= + −

+    

D’après le cours, on a ( )
( )

1

2
1

1

1

j

j

k
j

n k

n

−+∞

=
=

−
  donc ( )

( )
1

2
2

1
1

1

j

j

k
j

n k

n

−+∞

=
= −

−
  et 

ainsi : ( ) ( ) ( ) ( )1

2

1
1 1

1

j

j

k k k n n k
j

kn n n n k n

n

−+∞

=

−− = − − = −
−−

 . 



Corrigé  

On en déduit : ( )nE X = ( )1

0

1 1

2 1

n

k

n n k

n n k n

−

=

−+ −
+ − . 

En posant p n k= − , on trouve successivement : 

( )nE X = ( )
1 1 1

1 1 1 1 1

2 1 2 1 1

n n n

p p p

p pn n

n p n n p n n= = =
+ − = + −

+ + +   . 

( )nE X =
( )1 1 1

1 1 1 1 1 1

2 1 1 2 1 2

n n n

p p p

n n
p

n p n n n p= = =
+ − = + −

+ + +   . 

Conclusion : 

 

( )
1

1

1

n

n
p

n
E X

n p=
=

+   

 

 b) On peut proposer : 

 

n=int(input('entrez la valeur de n :')) 

v=np.arange(1,n+1) 

E=np.sum(1/v)*n/(n+1) 

print(E) 

 

9) a) p ∗∀ ∈ℕ , [ ], 1t p p∀ ∈ + , 
1 1 1

1p t p
≤ ≤

+
 (par décroissance de la fonction 

inverse sur ∗
+ℝ ).  

On intègre ces fonctions continues entre p et 1p +  (bornes dans l’ordre croissant) 

et on trouve : 

 

11 1 1
d

1

p

p
t

p t p

+
≤ ≤

+   

 

 b) Sommons l'encadrement précédent pour p allant de 1 à 1n −  (avec 2n ≥ ) : 
1 1 11

1 1 1

1 1 1
d

1

n n n
p

p
p p p

t
p t p

− − −+

= = =

≤ ≤
+    

La relation de Chasles pour les intégrales et le changement d’indice 1i p= +  dans 

la première somme permet d’écrire : 
1

1
2 1

1 1 1
d

n n
n

i p

t
i t p

−

= =

≤ ≤   

En revenant à l’indice p  et après calcul de l’intégrale restante, on a bien : 

 

{ } ( )
1

*

2 1

1 1
\ 1 , ln

n n

p p

n n
p p

−

= =

∀ ∈ ≤ ≤ ℕ  
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 c) On utilise l’encadrement précédent en séparant les deux inégalités. 

L’inégalité de gauche fournit ( )
1

1
1 ln

n

p

n
p=

− ≤ , soit : 

( )
1

1
ln 1

n

p

n
p=

≤ +   (1) 

L’inégalité de droite fournit ( )
1

1 1
ln

n

p

n
p n=

≤ − , soit : 

( )
1

1 1
ln

n

p

n
n p=

+ ≤   (2) 

En regroupant (1) et (2), on obtient : 

 

{ } ( ) ( )*

1

1 1
\ 1 , ln ln 1

n

p

n n n
n p=

∀ ∈ + ≤ ≤ +ℕ  

 

 d) En divisant l’encadrement précédent par ( )ln 0n >  (car 2n ≥ ), on trouve :  

2n∀ ≥ , 
( ) ( ) ( )

1

1

1 1
1 1

ln ln ln

n

p p

n n n n

=+ ≤ ≤ +


 

 

Or ( ) ( )1 1
lim 1 lim 1 1

ln( ) ln( )n nn n n→+∞ →+∞
+ = + = , donc par encadrement, on trouve : 

( )
1

1

lim 1
ln

n

p

n

p

n

=

→+∞
=


 

Ceci montre que ( )
1

1
ln

n

p

n
p +∞=

 ∼ . 

Pour finir, on sait que ( )
1

1

1

n

n
p

n
E X

n p=
=

+  , et comme 1
1

n

n +∞+
∼ , on a : 

 

( ) ( )lnnE X n
+∞
∼  


