
Mathématiques appliquées - Sujet 1

EXERCICE 1
1. Pour toute matrice M ∈ M3(IR) , 03M + M03 = 03 . Donc E03 = M3(IR).

Soit M ∈ M3(IR) ,
M ∈ EI3 ⇐⇒ I3M + MI3 = 03 ⇐⇒ 2M = 03 ⇐⇒ M = 03

Donc EI3 = {03}

2. Soit C ∈ M3(IR) .
• EC est une partie de M3(IR) par définition.
• 03 ∈ EC car C03 + 03C = 03 , ainsi EC n’est pas vide.
• Pour tous M et N de EC , et tout λ réel,

C(M + λN) + (M + λN)C = CM + MC︸ ︷︷ ︸
=03

+λ (CN + NC)︸ ︷︷ ︸
=03

= 03

donc M + λN ∈ EC . Alors EC est stable par combinaison linéaire
Ainsi, par caractérisation des sous-espaces vectoriels, EC est un sous-espace vectoriel de M3(IR) .

3. M ∈ EA donc AM + MA = 03 , ainsi t(AM + MA) = 03 , c’est-à-dire tM tA + tAtM = 03 .
Or A est symétrique, tMA + AtM = 03 , ainsi tM appartient à EA .

4. (a) A est symétrique donc A est diagonalisable.

(b) A2 =

 5 −2 −4
−2 8 −2
−4 −2 5

 et A3 =

 9 −18 0
−18 0 18

0 18 −9

 = 9A , donc x3 − 9x est un polynôme annulateur de A .

Ainsi, si λ est valeur propre de A , alors λ3 − 9λ = 0 .
(c) Les solutions de l’équation λ3 − 9λ = 0 sont −3 , 0 et 3 .

λ = −3 , A + 3I3 =

 4 −2 0
−2 3 2
0 2 2

. Remarquons que (A + 3I3)

 1
2

−2

 = 0. Et

 1
2

−2

 ̸= 0.

Donc −3 est bien une valeur propre de A et

 1
2

−2

 en est un vecteur propre associé.

λ = 0 , Remarquons que A

2
1
2

 = 0. Et

2
1
2

 ̸= 0.

Donc 0 est bien une valeur propre de A et

2
1
2

 en est un vecteur propre associé.

λ = 3 , A − 3I3 =

−2 −2 0
−2 −3 2
0 2 −4

. Remarquons que (A − 3I3)

−2
2
1

 = 0. Et

−2
2
1

 ̸= 0.

Donc 3 est bien une valeur propre de A et

−2
2
1

 en est un vecteur propre associé.

Comme les vecteurs

 1
2

−2

,

2
1
2

,

−2
2
1

 sont associés à des valeurs propres deux à deux distinctes, alors ils

forment une famille libre de cardinal 3 donc une base.

Finalement, en posant D =

−3 0 0
0 0 0
0 0 3

 et P =

 1 2 −2
2 1 2

−2 2 1

 , D = P −1AP .

5. Le calcul donne P 2 = 9I3 , c’est-à-dire 1
9P.P = P.

1
9P = I3 , ainsi P −1 = 1

9P .
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6. (a)

DN =

−3a −3b −3c
0 0 0
3g 3h 3i

 et ND =

−3a 0 3c
−3d 0 3f
−3g 0 3i


donc N ∈ ED si et seulement si

−6a −3b 0
−3d 0 3f

0 3h 6i

 = 03

c’est-à-dire si et seulement si a = b = d = f = h = i = 0 , si et seulement si N =

0 0 c
0 e 0
g 0 0

 .

N appartient à ED si et seulement si N =

0 0 c
0 e 0
g 0 0

 .

(b) D’après la question précédente,

ED =


0 0 c

0 e 0
g 0 0

 : (c, e, g) ∈ IR3


= Vect(N1, N2, N3) ,

où N1 =

0 0 1
0 0 0
0 0 0

 , N2 =

0 0 0
0 1 0
0 0 0

 et N3 =

0 0 0
0 0 0
1 0 0

 .

De plus la famille (N1, N2, N3) est libre, donc (N1, N2, N3) est une base de ED . En particulier, ED est de dimension 3 .

7. (a) Comme N = P −1MP donc M = PNP −1 , et par ailleurs D = P −1AP donc A = PDP −1 , ainsi :

M ∈ EA ⇐⇒ AM + MA = 03

⇐⇒ (PDP −1)(PNP −1) + (PNP −1)(PDP −1) = 03

⇐⇒ PDNP −1 + PNDP −1 = 03

⇐⇒ P (DN + ND)P −1 = 03

⇐⇒ DN + ND = 03

⇐⇒ N ∈ ED .

Ainsi, M ∈ EA si et seulement si N ∈ ED .
(b) Soit M de M3(IR) .

M ∈ EA ⇐⇒ P −1MP ∈ ED

⇐⇒ ∃(c, e, g) ∈ IR3 , P −1MP = cN1 + eN2 + gN3

⇐⇒ ∃(c, e, g) ∈ IR3 , M = cPN1P −1 + ePN2P −1 + gPN3P −1 .

Ainsi, EA = Vect(PN1P −1, PN2P −1, PN3P −1) .
Montrons maintenant que la famille (PN1P −1, PN2P −1, PN3P −1) est libre.
Soient a, b, c trois réels tels que aPN1P −1 + bPN2P −1 + cPN3P −1 = 03 . Alors P (aN1 + bN2 + cN3)P −1 = 03 .
donc aN1 + bN2 + cN3 = 03 , d’où a = b = c = 0 car la famille (N1, N2, N3) est libre.
Ainsi, la famille (PN1P −1, PN2P −1, PN3P −1) est libre. Puisqu’elle est également génératrice de EA , c’est une
base de EA .
Or P −1 = 1

9P , donc la famille (PN1P, PN2P, PN3P ) est également une base de EA .

8. Soit M ∈ M3(IR) .
(A + M)2 = A2 + AM + MA + M2 .
Donc (A + M)2 = A2 + M2 ⇐⇒ AM + MA = 03 ⇐⇒ M ∈ EA .

Ainsi, les matrices M vérifiant (A + M)2 = A2 + M2 sont exactement les matrices de EA , c’est-à-dire les

matrices de la forme P

0 0 c
0 e 0
g 0 0

 P , où (c, e, g) ∈ IR3 .
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9. Par définition, ker(φ) = EA , donc ker(φ) est de dimension 3 , ainsi d’après le théorème du rang :

rg(φ) = dim M3(IR) − dim ker(φ) = 9 − 3 = 6 .

Ainsi rg(φ) = 6.

EXERCICE 2
1. (a) Soit n ∈ IN .

• La fonction t 7→ tne−t est continue et à valeurs positives sur [0, +∞[ comme produit de fonctions usuelles
continues et à valeurs positives.

• lim
t→+∞

tne−t.et/2 = 0 par croissances comparées, donc tne−t =
t→+∞

o
(
e−t/2)

.

Or l’intégrale
∫ +∞

0
e−t/2 dt est convergente (car 1

2 > 0).

Donc par comparaison des intégrales de fonctions positives, l’intégrale
∫ +∞

0
tne−t dt est convergente.

(b) Une variable aléatoire de loi exponentielle de paramètre 1 a pour densité t 7−→

{
0 si t < 0
e−t si t ⩾ 0

.

donc
∫ +∞

0
e−t dt = 1.

Et une telle variable aléatoire admet un espérance qui vaut 1. Donc
∫ +∞

0
te−t dt = 1.

Ainsi I0 = 1 et I1 = 1.

2. Soit x un réel positif.

• La fonction t 7→ e−t

1 + xt
est continue et à valeurs positives sur [0, +∞[ comme quotient de fonctions usuelles

continues et à valeurs positives dont le dénominateur ne s’annule pas.

• De plus, pour tout t ∈ [0, +∞[ , 1 + xt ⩾ 1 et e−t ⩾ 0 , donc e−t

1 + xt
⩽ e−t .

Or l’intégrale
∫ +∞

0
e−t dt est convergente.

Donc par comparaison des intégrales de fonctions positives, l’intégrale
∫ +∞

0

e−t

1 + xt
dt est convergente.

3. F (0) =
∫ +∞

0
e−t dt = I0 = 1 . Ainsi F (0) = 1

4. Pour tout t ∈ [0, +∞[ , x ⩽ y donc 1 + xt ⩽ 1 + yt .
Donc par décroissance de la fonction inverse sur IR∗

+, 1
1 + yt

⩽
1

1 + xt
.

Or e−t ⩾ 0. Donc e−t

1 + yt
⩽

e−t

1 + xt
.

Ainsi, par croissance de l’intégrale, F (y) ⩽ F (x) .

Autrement dit, la fonction F est décroissante sur [0, +∞[ .

5. (a) Si x = 0 , alors
∫ 1

0

1
1 + xt

dt =
∫ 1

0
dt = 1 .

Si x > 0 , alors
∫ 1

0

1
1 + xt

dt =
[

1
x

ln |1 + xt|
]1

0
= ln(1 + x)

x
.

Ainsi
∫ 1

0

1
1 + xt

dt =

1 si x = 0
ln(1 + x)

x
si x > 0
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(b) Soit x un réel strictement positif.

Pour tout t ∈ [0, 1] , 0 ⩽ e−t ⩽ 1 et 1 + xt > 0 , donc 0 ⩽
e−t

1 + xt
⩽

1
1 + xt

.

Ainsi par croissance de l’intégrale, 0 ⩽
∫ 1

0

e−t

1 + xt
dt ⩽

∫ 1

0

1
1 + xt

dt .

(c) Soit x un réel strictement positif.

Pour tout réel t ⩾ 1 , 1 + xt ⩾ x et e−t ⩾ 0. Donc ∀t ∈ [0, 1], 0 ⩽
e−t

1 + xt
⩽

e−t

x
.

Ainsi, par croissance de l’intégrale, 0 ⩽
∫ +∞

1

e−t

1 + xt
dt ⩽

1
x

∫ +∞

1
e−t dt .

(d) Soit x un réel strictement positif.

D’après la relation de Chasles, F (x) =
∫ 1

0

e−t

1 + xt
dt +

∫ +∞

1

e−t

1 + xt
dt.

Donc d’après les questions précédentes, 0 ⩽ F (x) ⩽ ln(1 + x)
x

+ K

x
où K =

∫ +∞

1
e−t dt .

Or lim
x→+∞

ln(1 + x)
1 + x

= 0 car lim
x→+∞

1 + x = +∞.

Et ∀x ⩾ 1,
ln(1 + x)

x
= ln(1 + x)

1 + x

1 + x

x
et lim

x→+∞

1 + x

x
= 1.

Donc lim
x→+∞

ln(1 + x)
x

= 0 et lim
x→+∞

(
ln(1 + x)

x
+ K

x

)
= 0.

Donc d’après le théorème d’encadrement, lim
x→+∞

F (x) = 0 .

6. (a)

F (x) −
∫ +∞

0
e−t(1 − xt) dt =

∫ +∞

0
e−t

(
1

1 + xt
− (1 − xt)

)
dt

=
∫ +∞

0

e−t

1 + xt

(
1 − (1 − xt)(1 + xt)

)
dt

=
∫ +∞

0

e−t

1 + xt
x2t2 dt

= x2
∫ +∞

0

t2e−t

1 + xt
dt .

Ainsi F (x) −
∫ +∞

0
e−t(1 − xt) dt = x2

∫ +∞

0

t2e−t

1 + xt
dt .

(b) Or F (x) −
∫ +∞

0
e−t(1 − xt) dt = F (x) − I0 + xI1.

Et pour tout t ⩾ 0 , 0 ⩽
t2e−t

1 + xt
⩽ t2e−t car 1

1 + xt
⩽ 1 .

Donc par croissance de l’intégrale, 0 ⩽
∫ +∞

0

t2e−t

1 + xt
dt ⩽

∫ +∞

0
t2e−t dt = I2 .

Ainsi, d’après l’identité de la question précédente, 0 ⩽ F (x) − I0 + xI1 ⩽ x2I2 .

7. (a) D’après la question 1.(b)I0 = I1 = 1 .
D’après l’encadrement de la question précédente, 0 ⩽ F (x) − 1 + x ⩽ x2I2 ,

Donc 0 ⩽
F (x) − 1 + x

x
⩽ xI2 .

Ainsi, d’après le théorème d’encadrement, lim
x→0

F (x) − 1 + x

x
= 0 , autrement dit F (x) − 1 + x =

x→0
o(x) .

D’où F (x) =
x→0

1 − x + o(x).
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(b) ∀x > 0,
F (x) − F (0)

x − 0 = F (x) − 1
x

.

Et d’après la question précédente, F (x) − 1
x

=
x→0

(
1 − x + o(x)

)
− 1

x
=

x→0
−1 + o(1) .

Donc lim
x→0

F (x) − F (0)
x − 0 = −1 , autrement dit F est dérivable en 0 et F ′(0) = −1 .

8. D’après les questions précédentes,
• F (0) = 1 ,
• F est décroissante sur [0, +∞[ ,
• F tend vers 0 en +∞ ,
• la tangente à la courbe représentative de F au point d’abscisse 0 a pour équation y = 1 − x .

EXERCICE 3
Partie I.

1. Soit i ∈ J1, nK .
• La fonction fi est continue sur ] − ∞, 1[ (car constante) et sur ]1, +∞[ (comme inverse d’une fonction usuelle

continue dont le dénominateur ne s’annule pas). Ainsi, fi est continue sur IR \ {1} .
• La fonction fi est à valeurs positives sur IR .

• L’intégrale
∫ 1

−∞
fi(t) dt converge car fi = 0 sur ] − ∞, 1[.

L’intégrale
∫ +∞

1
fi(t) dt converge car

∫ +∞

1

1
xi+1 dx est une intégrale de Riemann et i + 1 > 1 .

Donc
∫ +∞

−∞
fi(t) dt converge.

De plus,
∫ +∞

−∞
fi(t) dt =

∫ +∞

1

i

ti+1 dt = lim
A→+∞

[
− 1

ti

]A

1
= 1 .

Ainsi, fi est bien une densité de probabilité.
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2. (a) Soit i ∈ J1, nK .

Xi admet une espérance si et seulement si
∫ +∞

−∞
tfi(t) dt converge absolument,

si et seulement si
∫ +∞

1

i

ti
dt converge,

si et seulement si i > 1 , d’après le résultat sur les intégrales de Riemann.
Ainsi, Xi admet une espérance si et seulement si i ∈ J2, nK .

Dans ce cas, E(Xi) =
∫ +∞

1

i

ti
dt

= lim
A→+∞

[
− i

(i − 1)ti−1

]A

1

= lim
A→+∞

( i

i − 1 − i

(i − 1)Ai−1

)
= i

i − 1 .

Ainsi ∀i ∈ J2, nK, IE(Xi) = i

i − 1 .

(b) Pour tout i ∈ J2, n − 1K , i2 ⩾ (i − 1)(i + 1) = i2 − 1 donc i

i − 1 ⩾
i + 1

i
. Alors E(Xi) ⩾ E(Xi+1) .

Ainsi, les numéros de catégorie socioprofessionnelle sont donnés dans l’ordre décroissant de revenu moyen : les
individus de la catégorie numéro 2 possède un revenu moyen supérieur à ceux de la catégorie numéro 3 , etc.

3. Soient i ∈ J1, nK et x un réel.

• Si x < 1 , Fi(x) =
∫ x

−∞
fi(t) dt =

∫ x

−∞
0 dt = 0 .

• Si x ⩾ 1 .
Fi(x) =

∫ x

−∞
fi(t) dt

=
∫ 1

−∞
fi(t) dt︸ ︷︷ ︸
=0

+
∫ x

1
fi(t) dt

=
∫ x

1

i

ti+1 dt

= 1 − 1
xi

.

Ainsi, Fi(x) =
{

1 − 1
xi

si x ⩾ 1 ,

0 si x < 1 .

4. (a) Remarquons d’abord que 0 < U < 1 presque sûrement, donc 0 < U1/i < 1 presque sûrement, donc Vi > 1
presque sûrement. Ainsi, Vi(Ω) =]1, +∞[.
Donc ∀x < 1, FVi

(x) = 0.
Soit x ⩾ 1 .

FVi
(x) = P

(
1

U1/i
⩽ x

)
= P

(
U1/i ⩾

1
x

)
par décroissance de la fonction inverse

= P

(
U ⩾

1
xi

)
par croissance de la fonction x 7→ xi

= 1 − FU

( 1
xi

)
= 1 − 1

xi
, car 1

xi
∈]0, 1[ .

Ainsi, pour tout x ∈ IR , FVi(x) = Fi(x) , donc Vi et Xi suivent la même loi.
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(b) On simule U puis Vi .

import numpy. random as rd

def simulX (i):
u = rd. random ()
return u ** (-1/i)

Partie II.
5. On simule une loi binomiale, c’est-à-dire la loi du nombre de succès dans une répétition d’épreuves de Bernoulli

indépendantes et de même probabilité de succès. Cependant on initialise le compte à 1 car c’est Y − 1 qui suit une
loi binomiale.

import numpy. random as rd

def simulY (n, p):
x = 1
for i in range(n -1):

if rd. random () < p:
x += 1

return x

6.
def loiY(n, p):

N = 10000
loi = [0] * n
for k in range(N):

y = simulY (n, p)
loi[y -1] += 1 / N

return loi

7.
def figure (n, p):

valeurs = np. arange (1, n+1)
probas = loiY(n, p)
plt.bar(valeurs , probas )
plt.show ()

8. (a) La clé primaire d’une table doit permettre d’identifier de manière unique chaque enregistrement de la table :
chaque enregistrement doit posséder une valeur dans cet attribut, et deux enregistrements différents doivent
avoir des valeurs différentes dans cet attribut.

(b) Dans la table individu, l’attribut i_insee peut servir de clé primaire.
Dans la table departement, l’attribut d_numero peut servir de clé primaire.
Dans la table profession, l’attribut p_pcs peut servir de clé primaire.

7/10



Mathématiques appliquées - Sujet 1

(c) Les traits reliant deux tables indiquent l’attribut permettant de les lier.

Autre possibilité :
Dans le schéma relationnel suivant, les clés primaires sont notées en gras et les clés étrangères sont soulignées :

individu(i_nom,i_prenom,i_departement,i_insee, i_code_profession)
departement(d_numero,d_nom,d_population)
profession (p_psc, p_categorie,p_intitule)

• l’attribut i_departement de la table individu est une clé étrangère qui pointe vers l’attribut d_numero
de la table departement.

• l’attribut i_code_profession de la table individu est une clé étrangère qui pointe vers l’attribut p_pcs
de la table profession.

(d)
SELECT DISTINCT i_code_profession
FROM individu
WHERE i_departement = 28;

(e)

SELECT i_insee , p_categorie
FROM individu
INNER JOIN profession ON i_code_profession = p_pcs

Partie III.
9. Pour tout i ∈ J1, nK , La loi conditionnelle de Zn sachant [Y = i] est la loi de Xi .

Or toutes les variables aléatoires Xi sont à valeurs dans [1, +∞[ .
Donc Zn est à valeurs dans [1, +∞[ et Gn(x) = 0 pour tout x < 1 .

10. (a) Pour tout i ∈ J1, nK , la loi conditionnelle de Zn sachant [Y = i] est la loi de Xi .
Donc IP[Y =i](Zn ⩽ x) = IP (Xi ⩽ x) = Fi(x) .
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(b) D’après la formule des probabilités totales appliquée au système complet d’événements
{

[Y = i] : i ∈ J1, nK
}

:

Gn(x) = IP (Zn ⩽ x)

=
n∑

i=1
IP[Y =i](Zn ⩽ x)P (Y = i)

=
n∑

i=1
Fi(x)IP (Y − 1 = i − 1)

=
n∑

i=1
Fi(x)

(
n − 1
i − 1

)
pi−1(1 − p)n−i

Ainsi Gn(x) =
n−1∑
k=0

Fk+1(x)
(

n − 1
k

)
pk(1 − p)n−1−k .

(c)

Gn(x) =
n−1∑
k=0

(
1 − 1

xk+1

)(
n − 1

k

)
pk(1 − p)n−1−k

=
n−1∑
k=0

(
n − 1

k

)
pk(1 − p)n−1−k

︸ ︷︷ ︸
=1

− 1
x

n−1∑
k=0

(
n − 1

k

)( p

x

)k

(1 − p)n−1−k

= 1 − 1
x

( p

x
+ 1 − p

)n−1

= 1 −
(
p + (1 − p)x

)n−1

xn
.

Ainsi Gn(x) = 1 −
(
p + (1 − p)x

)n−1

xn
.

11. D’après les questions précédentes,
• la fonction Gn est de classe C1 sur ]−∞, 1[ (car constante) et sur ]1, +∞[ (comme produit de fonctions polynomiales

dont le dénominateur ne s’annule pas).
Ainsi, Gn est de classe C1 sur IR \ {1} .

• En particulier, Gn est continue sur IR \ {1} .
De plus, lim

x→1−
Gn(x) = 0 = Gn(1) = lim

x→1+
Gn(x) ,

Donc Gn est continue en 1 .
Finalement, Gn est continue sur IR.

Par caractérisation des variables aléatoires à densité, Zn est donc une variable aléatoire à densité.
12.

def sondage (n, p):
i = simulY (n, p)
return simulX (i)

13. (a) Pour tout x < 1 , Gn(x) = 0 .
Soit x ⩾ 1 . D’après la question 10.(c),

Gn(x) = 1 −
( 1

n + n−1
n x

)n−1

xn

= 1 − 1
x

(1 + (n − 1)x
nx

)n−1

= 1 − 1
x

(
1 − x − 1

nx

)n−1
.

Ainsi ∀x ∈ IR, Gn(x) =

 1 − 1
x

(
1 − x − 1

nx

)n−1
si x ⩾ 1 ,

0 si x < 1 .
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(b) Soit x ⩽ 1 . Pour tout n ∈ IN∗ , Gn(x) = 0 .
Donc lim

n→+∞
Gn(x) = 0 .

Soit x > 1 . D’après l’expression de Gn(x) obtenue à la question précédente,

Gn(x) = 1 − 1
x

exp
(

(n − 1) ln
(

1 − x − 1
nx

))
. (1)

Or ln(1 + h) ∼
h→0

h . Donc comme −x − 1
nx

−→
n→+∞

0 ,

(n − 1) ln
(

1 − x − 1
nx

)
∼

n→+∞
−(n − 1)x − 1

nx

Alors lim
n→+∞

(n − 1) ln
(

1 − x − 1
nx

)
= 1 − x

x
.

D’où d’après l’identité (1) : lim
n→+∞

Gn(x) = 1 − 1
x

e
(1−x)

x .

Finalement, pour tout x réel, lim
n→+∞

Gn(x) = G(x) , où G(x) =

 1 − 1
x

e
(1−x)

x si x > 1 ,

0 si x ⩽ 1 .
.

G est une fonction de classe C 1 sur IR\{1} de dérivée g définie par g(x) =

0 si x ⩽ 1
1 + x

x3 e
1
x −1 si x > 1

.

• g est positive sur IR.
• g est une fonction continue sur IR\{1}.
• Une primitive de g est G sur ]1, +∞[ et lim

x→+∞
G(x) = 1 et lim

x→1
G(x) = 1.

Donc
∫ +∞

1
g(x)dx converge et vaut 1.

Comme g est nulle sur ] − ∞, 1],
∫ 1

−∞
g(x)dx converge et vaut 0.

Donc par définition
∫ +∞

−∞
g(x)dx converge et vaut 1

Donc g est une densité de probabilité.
Or ∀x ∈ IR, G(x) =

∫ x

−∞
g(t)dt. Donc G est bien une fonction de répartition.

Ainsi la suite de variables aléatoires (Zn)n∈IN∗ converge en loi vers une variable aléatoire de fonction de répar-
tition G .
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